Kočinac, Ljubiša D. R.; Scheepers, Marion Combinatorics of open covers. VII: Groupability. (English) Zbl 1115.91013 Fundam. Math. 179, No. 2, 131-155 (2003). Combinatorial properties of open covers are studied. Ramseyan partition relations are used to characterize: (1) the classical covering property of Hurewicz, (2) the covering property of Gerlits and Nagy, and (3) the combinatorial cardinal numbers \(b\) and \(\text{add}(M)\). Let \(X\) be a Tikhonov space and \(C_p(X)\) the corresponding space of real-valued continuous functions on \(X\), endowed with the topology of pointwise convergence. It is shown that the following are equivalent: (1) \(C_p(X)\) has countable fan tightness and the Reznichenko property and (2) all finite powers of \(X\) have the Hurewicz property.Part VI, cf. the second author, Quaest. Math. 22, No. 1, 109–130 (1999; Zbl 0972.91026). More recent parts have appeared (VIII: Topology Appl. 140, No. 1, 15–32 (2004; Zbl 1051.54019), IX: Note Mat. 22 (2003–2004), No. 2, 167–178 (2004; Zbl 1115.54009), XI: Topology Appl. 154, No. 7, 1269–1280 (2007; Zbl 1114.54023)). Reviewer: Giacomo Bonanno (Davis) Cited in 1 ReviewCited in 62 Documents MSC: 91A44 Games involving topology, set theory, or logic 54D20 Noncompact covering properties (paracompact, Lindelöf, etc.) 03E02 Partition relations 05D10 Ramsey theory 54A25 Cardinality properties (cardinal functions and inequalities, discrete subsets) 54C65 Selections in general topology Keywords:Hurewicz property; Reznichenko property; Gerlits-Nagy property; countable fan tightness; Ramsey theory; game theory Citations:Zbl 1011.54017; Zbl 1051.54019; Zbl 1114.54023; Zbl 1115.54009; Zbl 0972.91026 PDF BibTeX XML Cite \textit{L. D. R. Kočinac} and \textit{M. Scheepers}, Fundam. Math. 179, No. 2, 131--155 (2003; Zbl 1115.91013) Full Text: DOI Link OpenURL