zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive control for the stabilization and synchronization of Lorenz systems. (English) Zbl 1115.93347
Summary: This letter derives some sufficient conditions for the stabilization and synchronization of Lorenz systems via impulsive control with varying impulsive intervals. Compared with the existing results, these conditions are less conservative in that the Lyapunov function is only required to be nonincreasing along a subsequence of switchings, instead of the whole sequence of switchings. Moreover, a larger upper bound of impulsive intervals for the stabilization and synchronization can be obtained.

93D15Stabilization of systems by feedback
37N35Dynamical systems in control
Full Text: DOI
[1] D.D. Bainov, P.S. Simeonov. Systems With Impulse Effect: Stability, Theory and Applications, Halsted Press, New York, 1989. · Zbl 0676.34035
[2] Chua, L. O.; Itoh, M.; Kocarev, L.; Eckert, K.; Circuits, J.: Syst. and comput.. 3, 93 (1993)
[3] Hunt, E. R.; Johnson, G.: IEEE spectrum. 32, 32 (1993)
[4] Itoh, M.; Yang, T.; Chua, L. O.: Int. J. Bifurc. chaos. 9, 1393 (1999)
[5] V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989. · Zbl 0719.34002
[6] Z.G. Li, C.Y. Wen, Y.C. Soh, IEEE Transactions on Automatic Control, 2000, revised.
[7] Lorenz, E. N.: J. atmospheric sci.. 20, 130 (1963)
[8] Panas, A. I.; Yang, T.; Chua, L. O.: Int. J. Bifurc. chaos appl. Sci. eng.. 8, 639 (1998)
[9] Schweizer, J.; Kennedy, M. P.: Physs rev. E. 52, 4865 (1995)
[10] Yang, T.: IEEE trans. Autom. control. 44, 1081 (1999)
[11] Yang, T.; Chua, L. O.: IEEE trans. Circuit syst. Part I: fundam. Appl.. 44, 976 (1997)
[12] Yang, T.; Yang, Lin-Bao; Yang, Chun-Mei: Physica D: Nonlinear phenomena. 110, 18 (1997)
[13] Yang, T.; Yang, Lin-Bao; Yang, Chun-Mei: Phys. lett. A. 226, 349 (1997)