×

Quasi-periodic decompositions and the Kemperman structure theorem. (English) Zbl 1116.11081

The author investigates the notion of quasi-periodic decomposition and develops its basic properties in relation to the Kemperman structure theorem. In this paper the author obtains some applications of Kemperman’s structure theorem.

MSC:

11P70 Inverse problems of additive number theory, including sumsets
11B75 Other combinatorial number theory
20D60 Arithmetic and combinatorial problems involving abstract finite groups
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Alon, N.; Dubiner, M., Zero-sum sets of prescribed size, (), 33-50 · Zbl 0823.11006
[2] Bialostocki, A.; Dierker, P.; Grynkiewicz, D.; Lotspiech, M., On some developments of the erdős – ginzburg – ziv theorem II, Acta arith., 110, 2, 173-184, (2003) · Zbl 1069.11007
[3] Bourgain, J.; Katz, N.; Tao, T., A sum-product estimate for finite fields, and applications, Geom. funct. anal., 14, 1, 27-57, (2004) · Zbl 1145.11306
[4] Caro, Y., Zero-sum problems—a survey, Discrete math., 152, 1-3, 93-113, (1996) · Zbl 0856.05068
[5] Cauchy, A.L., Recherches sur LES nombres, J. école polytech., 9, 99-116, (1813)
[6] Chowla, S.; Mann, H.B.; Strauss, E.G., Some applications of the cauchy – davenport theorem, Norske vid. selsk. forh. (Trondheim), 32, 74-80, (1959) · Zbl 0109.03206
[7] Davenport, H., On the addition of residue classes, J. London math. soc., 10, 30-32, (1935) · Zbl 0010.38905
[8] Gao, W.D., On the erdős – ginzburg – ziv theorem—a survey, (), 76-78 · Zbl 1109.11308
[9] D. Grynkiewicz, An extension of the Erdős-Ginzburg-Ziv theorem to hypergraphs, European J. Combin. (in press) · Zbl 1107.11015
[10] Grynkiewicz, D., On four colored sets with nondecreasing diameter and the erdős – ginzburg – ziv theorem, J. combin. theory ser. A, 100, 1, 44-60, (2002) · Zbl 1027.11016
[11] Halberstam, H.; Roth, K.F., Sequences, (1983), Springer-Verlag New York · Zbl 0498.10001
[12] Hamidoune, Y.O., Some results in additive number theory I, the critical pair theory, Acta arith., 96, 2, 97-119, (2000) · Zbl 0985.11011
[13] Hamidoune, Y.O., Subsets with a small sum II: the critical pair problem, European J. combin., 21, 2, 231-239, (2000) · Zbl 0941.05064
[14] Hamidoune, Y.O., Subsets with small sums in abelian groups I: the vosper property, European J. combin., 18, 5, 541-556, (1997) · Zbl 0883.05065
[15] Hou, X.; Leung, K.; Xiang, Q., A generalization of an addition theorem of Kneser, J. number theory, 97, 1-9, (2002) · Zbl 1034.11020
[16] Kemperman, J.H.B., On small sumsets in an abelian group, Acta math., 103, 63-88, (1960) · Zbl 0108.25704
[17] Kneser, M., Summenmengen in lokalkompakten abelschen gruppen, Math. Z., 66, 88-110, (1956) · Zbl 0073.01702
[18] Kneser, M., Ein satz über abelsche gruppen mit anwendungen auf die geometrie der zahlen, Math. Z., 64, 429-434, (1955) · Zbl 0064.04305
[19] Kneser, M., Abschätzung der asymptotischen dichte von summenmengen, Math. Z., 58, 459-484, (1953) · Zbl 0051.28104
[20] Lev, V., On small sumsets in abelian groups. structure theory of set addition, Asterisque, xv, 258, 317321, (1999)
[21] Mann, H.B., An addition theorem for sets of elements of an abelian group, Proc. am. math. soc., 4, 423, (1953) · Zbl 0050.25703
[22] Mann, H.B., Addition theorems: the addition theorems of group theory and number theory, (1965), Interscience New York · Zbl 0127.27203
[23] Nathanson, M.B., Additive number theory. inverse problems and the geometry of sumsets, () · Zbl 1158.11303
[24] Tietäväinen, A., On diagonal forms over finite fields, Ann. univ. Turku ser. A I, 118, 10, (1968) · Zbl 0157.10401
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.