×

zbMATH — the first resource for mathematics

On the density of algebraic foliations without algebraic invariant sets. (English) Zbl 1116.32023
Let \(X\) be a smooth complex projective variety of dimension greater than or equal to 2, \({\mathcal L}\) an ample line bundle and \(k\gg 0\) an integer.
The authors prove that a very generic global section of the twisted tangent sheaf \(\Theta_X \otimes {\mathcal L} ^{\otimes k}\) gives rise to a one dimensional, singular foliation of \(X\) without any proper algebraic invariant subvarieties of nonzero dimension. As a corollary the authors obtain a dynamical characterization of ampleness for line bundles \({\mathcal L}\) over smooth projective surfaces, as the line bundles such that the generic section of \(\Theta _X \otimes {\mathcal L}^{\otimes k}\) induces a foliation without invariant algebraic curves.

MSC:
32S65 Singularities of holomorphic vector fields and foliations
32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Altman A. B., Comp. Math. 34 pp 3– (1977)
[2] Arnold V. I., Adv. Sov. Math. 1 pp 1– (1990)
[3] DOI: 10.2307/2118537 · Zbl 0855.32015 · doi:10.2307/2118537
[4] Darboux G., Bull. Sc. Math. (Mélanges) (1878) 60 pp 123–
[5] Fujita T., Proc. Japan Acad. 55 pp 106– · Zbl 0444.14026 · doi:10.3792/pjaa.55.106
[6] Gómez-Mont X., Comment. Math. Helv. 64 pp 3– (1989)
[7] DOI: 10.1007/BFb0081403 · doi:10.1007/BFb0081403
[8] Lins Neto A., J. Di\currency. Geom. 43 pp 652– (1996)
[9] DOI: 10.1215/S0012-7094-89-05824-9 · Zbl 0696.14009 · doi:10.1215/S0012-7094-89-05824-9
[10] Mendes L. G., Ci. 69 pp 11– (1997)
[11] DOI: 10.1007/BF01244239 · Zbl 0979.32017 · doi:10.1007/BF01244239
[12] Pereira J. V., J. Pure Appl. Alg. 171 pp 295– (2002)
[13] DOI: 10.1007/BF03015916 · JFM 28.0292.01 · doi:10.1007/BF03015916
[14] Soares M. G., Ann. Inst. Fourier 43 pp 143– (1993) · Zbl 0770.57016 · doi:10.5802/aif.1325
[15] Zakeri S., Contemp. Math. 269 pp 179– (2001) · doi:10.1090/conm/269/04333
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.