zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Half-inverse problem for diffusion operators on the finite interval. (English) Zbl 1116.34010
The following uniqueness theorem is proved: Theorem. Let $\{\lambda_n\}$ be a spectrum of the problems $$-y''+ [q(x)+ 2\lambda p(x)] y=\lambda^2 y,\qquad x\in [0,\pi],$$ $$y'(0)- hy(0)= 0,\quad y'(\pi,\lambda)+ Hy(\pi,\lambda)= 0,$$ and $$-y''+ [\widetilde q(x)+ 2\lambda p(x)]y= \lambda^2 y,\qquad x\in [0,\pi],$$ $$y'(0)- hy(0)= 0,\quad y'(\pi,\lambda)+ Hy(\pi,\lambda)= 0,$$ where $h$, $H$ are finite, $p\in W^{m+1}_2[0,\pi]$, $q,\widetilde q\in W^m_2[0,\pi]$, $m\ge 1$ are real-valued. If $q(x)=\widetilde q(x)$ on $[{\pi\over 2},\pi]$, then $q(x)=\widetilde q(x)$ almost everywhere on $[0,\pi]$.

MSC:
34A55Inverse problems of ODE
34B24Sturm-Liouville theory
WorldCat.org
Full Text: DOI
References:
[1] Borg, G.: Eine umkehrung der Sturm -- liouvillesehen eigenwertaufgabe. Acta math. 78, 1-96 (1945)
[2] Carlson, R.: Inverse spectral theory for some singular Sturm -- Liouville problems. J. differential equations 106, No. 1, 121-140 (1993) · Zbl 0813.34015
[3] Carlson, R.; Shubin, C.: Spectral rigidity for radial Schrödinger operators. J. differential equations 113, No. 2, 338-354 (1994) · Zbl 0809.34088
[4] Gasymov, M. G.; Guseinov, G. Sh.: Determination of diffusion operator on spectral data 1. Dokl. akad. Nauk azerb. SSR 37, No. 2, 19-23 (1981)
[5] Gesztesy, F.; Simon, B.: A new approach to inverse spectral theory. II: general real potentials and the connection to the spectral measure. Ann. of math. 2, No. 152, 593-643 (2000) · Zbl 0983.34013
[6] Gesztesy, F.; Simon, B.: Inverse spectral analysis with partial information on the potential. II: the case of discrete spectrum. Trans. amer. Math. soc. 352, No. 6, 2765-2787 (2000) · Zbl 0948.34060
[7] Gilbert, R. P.: A method of ascent for solving boundary value problems. Bull. amer. Math. soc. 75, 1286-1289 (1969) · Zbl 0188.16803
[8] Hald, O. H.: Discontinuous inverse eigenvalue problems. Comm. pure appl. Math. 37, 539-577 (1984) · Zbl 0541.34012
[9] Hochstadt, H.: The inverse Sturm -- Liouville problem. Comm. pure appl. Math. 27, 715-729 (1973) · Zbl 0281.34015
[10] Hochstadt, H.; Lieberman, B.: An inverse Sturm -- Liouville problem with mixed given data. SIAM J. Appl. math. 34, 676-680 (1978) · Zbl 0418.34032
[11] Hryniv, O. R.; Mykytyuk, Y. V.: Half-inverse spectral problems for Sturm -- Liouville operators with singular potentials. Inverse problems 20, No. 5, 1423-1444 (2004) · Zbl 1074.34007
[12] Jaulent, M.; Jean, C.: The inverse s-wave scattering problem for a class of potentials depending on energy. Comm. math. Phys. 28, 177-220 (1972)
[13] Levitan, B. M.: On the determination of the Sturm -- Liouville operator from one and two spectra. Math. USSR izv. 12, 179-193 (1978) · Zbl 0401.34022
[14] Malamud, M. M.: Uniqueness questions in inverse problems for systems of differential equations on a finite interval. Trans. Moscow math. Soc. 60, 204-262 (1999) · Zbl 0939.34012
[15] Panakhov, E. S.; Koyunbakan, H.: Inverse problem for singular Sturm -- Liouville operator. Proceeding of IMM of NAS of azerbaijan 18, 113-126 (2003) · Zbl 1088.34007
[16] Pöschel, J.; Trubowitz, E.: Inverse spectral theory. (1987)
[17] Raltson, J.; Trubowitz, E.: Isospectral sets for value problems on the unit interval. Ergodic theory dynam. Systems 8, 301-358 (1988) · Zbl 0678.34025
[18] Rundell, W.; Sacks, P. E.: Reconstruction of a radially symmetric potential from two spectral sequences. J. math. Anal. appl. 264, 354-381 (2001) · Zbl 1011.35129
[19] Sakhnovich, L.: Half inverse problems on the finite interval. Inverse problems 17, 527-532 (2001) · Zbl 0988.34021