zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global conservative solutions of the generalized hyperelastic-rod wave equation. (English) Zbl 1116.35115
Summary: We prove existence of global and conservative solutions of the Cauchy problem for the nonlinear partial differential equation $$u_t-u_{xxt}+ f(u)_x-f(u)_{xxx}+(g(u)+\frac 12 f''(u)(u_x)^2)_x=0$$ where $f$ is strictly convex or concave and $g$ is locally uniformly Lipschitz. This includes the Camassa-Holm equation $(f(u)=u^2/2$ and $g(u)=\kappa u+u^2)$ as well as the hyperelastic-rod wave equation $(f(u)=\gamma u^2/2$ and $g(u)=(3-\gamma)u^2/2)$ as special cases. It is shown that the problem is well-posed for initial data in $H^1(\bbfR)$ if one includes a Radon measure that corresponds to the energy of the system with the initial data. The solution is energy preserving. Stability is proved both with respect to initial data and the functions $f$ and $g$. The proof uses an equivalent reformulation of the equation in terms of Lagrangian coordinates.

35Q72Other PDE from mechanics (MSC2000)
35B35Stability of solutions of PDE
74K10Rods (beams, columns, shafts, arches, rings, etc.) in solid mechanics
76B15Water waves, gravity waves; dispersion and scattering, nonlinear interaction
35Q35PDEs in connection with fluid mechanics
Full Text: DOI
[1] A. Bressan, A. Constantin, Global conservative solutions of the Camassa -- Holm equation, Arch. Ration. Mech. Anal., in press · Zbl 1105.76013
[2] Bressan, A.; Fonte, M.: An optimal transportation metric for solutions of the Camassa -- Holm equation. Methods appl. Anal. 12, 191-200 (2005) · Zbl 1133.35054
[3] Brezis, H.: Analyse fonctionnelle. (1983)
[4] Camassa, R.; Holm, D. D.: An integrable shallow water equation with peaked solitons. Phys. rev. Lett. 71, No. 11, 1661-1664 (1993) · Zbl 0972.35521
[5] Camassa, R.; Holm, D. D.; Hyman, J.: A new integrable shallow water equation. Adv. appl. Mech. 31, 1-33 (1994) · Zbl 0808.76011
[6] Coclite, G. M.; Holden, H.; Karlsen, K. H.: Well-posedness for a parabolic -- elliptic system. Discrete contin. Dyn. syst. 13, 659-682 (2005) · Zbl 1082.35056
[7] Coclite, G. M.; Holden, H.; Karlsen, K. H.: Global weak solutions to a generalized hyperelastic-rod wave equation. SIAM J. Math. anal. 37, 1044-1069 (2005) · Zbl 1100.35106
[8] Constantin, A.; Escher, J.: Global existence and blow-up for a shallow water equation. Ann. sc. Norm. super Pisa cl. Sci. (4) 26, No. 2, 303-328 (1998) · Zbl 0918.35005
[9] Constantin, A.; Molinet, L.: Global weak solutions for a shallow water equation. Comm. math. Phys. 211, No. 1, 45-61 (2000) · Zbl 1002.35101
[10] Dai, H. -H.: Exact travelling-wave solutions of an integrable equation arising in hyperelastic rods. Wave motion 28, No. 4, 367-381 (1998) · Zbl 1074.74541
[11] Dai, H. -H.: Model equations for nonlinear dispersive waves in a compressible mooney -- rivlin rod. Acta mech. 127, No. 1 -- 4, 193-207 (1998) · Zbl 0910.73036
[12] Dai, H. -H.; Huo, Y.: Solitary shock waves and other travelling waves in a general compressible hyperelastic rod. Proc. R. Soc. lond. Ser. A math. Phys. eng. Sci. 456, No. 1994, 331-363 (2000) · Zbl 1004.74046
[13] Evans, L. C.; Gariepy, R. F.: Measure theory and fine properties of functions. Stud. adv. Math. (1992) · Zbl 0804.28001
[14] Folland, G. B.: Real analysis. (1999) · Zbl 0924.28001
[15] Fonte, M.: Conservative solution of the Camassa -- Holm equation on the real line
[16] H. Holden, X. Raynaud, Global conservative solutions of the Camassa -- Holm equation --- a Lagrangian point of view, Comm. Partial Differential Equations, in press · Zbl 1136.35080
[17] H. Holden, X. Raynaud, Global conservative multipeakon solutions of the Camassa -- Holm equation, J. Hyperbolic Differ. Equ., in press · Zbl 1128.65065
[18] Johnson, R. S.: Camassa -- Holm, Korteweg -- de Vries and related models for water waves. J. fluid mech. 455, 63-82 (2002) · Zbl 1037.76006
[19] Lieb, E. H.; Loss, M.: Analysis. (2001) · Zbl 0966.26002
[20] Málek, J.; Nečas, J.; Rokyta, M.; Růžička, M.: Weak and measure-valued solutions to evolutionary pdes. (1996) · Zbl 0851.35002
[21] Xin, Z.; Zhang, P.: On the uniqueness and large time behavior of the weak solutions to a shallow water equation. Comm. partial differential equations 27, 1815-1844 (2002) · Zbl 1034.35115
[22] Yosida, K.: Functional analysis. (1995) · Zbl 0842.92020