de Carvalho, André; Hall, Toby The forcing relation for horseshoe braid types. (English) Zbl 1116.37307 Exp. Math. 11, No. 2, 271-288 (2002). Summary: This paper presents evidence for a conjecture concerning the structure of the set of braid types of periodic orbits of Smale’s horseshoe map, partially ordered by Boyland’s forcing order. The braid types are partitioned into totally ordered subsets, which are defined by parsing the symbolic code of a periodic orbit into two segments, the prefix and the decoration: The set of braid types of orbits with each given decoration is totally ordered, the order being given by the unimodal order on symbol sequences. The conjecture is supported by computer experiment, by proofs of special cases, and by intuitive argument in terms of pruning theory. Cited in 1 ReviewCited in 5 Documents MSC: 37E30 Dynamical systems involving homeomorphisms and diffeomorphisms of planes and surfaces 37B10 Symbolic dynamics 37B40 Topological entropy 57M25 Knots and links in the \(3\)-sphere (MSC2010) Keywords:Horseshoe periodic orbits; braid forcing Software:Horseshoe × Cite Format Result Cite Review PDF Full Text: DOI Euclid EuDML References: [1] Adler R., Trans. Amer. Math. Soc. 114 pp 309– (1965) · doi:10.1090/S0002-9947-1965-0175106-9 [2] Benardete D., Mapping class groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991) pp 1– (1993) · doi:10.1090/conm/150/01283 [3] Benardete D., J. Knot Theory Ramifications 4 (4) pp 549– (1995) · Zbl 0874.57010 · doi:10.1142/S0218216595000259 [4] Bestvina M., Topology 34 (1) pp 109– (1995) · Zbl 0837.57010 · doi:10.1016/0040-9383(94)E0009-9 [5] Boyland P., EmphBraid types and a topological method of proving positive entropy (1984) [6] Boyland P., Comment. Math. Helv. 2 pp 203– (1992) · Zbl 0763.58012 · doi:10.1007/BF02566496 [7] Boyland P., Topology Appl. 58 (3) pp 223– (1994) · Zbl 0810.54031 · doi:10.1016/0166-8641(94)00147-2 [8] de Carvalho A., Ergodic Theory Dynam. Systems 19 (4) pp 851– (1999) · Zbl 0948.37027 · doi:10.1017/S0143385799133972 [9] de Carvalho A., ”Conjugacies between horseshoe braids.” · Zbl 1058.37028 [10] de Carvalho A., ”Star shaped train tracks.” · Zbl 1134.37341 [11] de Carvalho A., J. European Math. Soc. 3 (4) pp 287– (2001) · Zbl 1045.37021 · doi:10.1007/s100970100034 [12] Devaney R., An introduction to chaotic dynamical systems, (1989) · Zbl 0695.58002 [13] Fathi A., Société Mathématique de France (1979) [14] Franks J., Nielsen theory and dynamical systems (South Hadley, MA, 1992) pp 69– (1993) · doi:10.1090/conm/152/01319 [15] Hall, T. [Hall 02], Software available fromhttp://www.liv.ac.uk/ tobyhall/hs/ [16] Hall T., Math. Proc. Cambridge Philos. Soc. 110 (3) pp 523– (1991) · Zbl 0751.58031 · doi:10.1017/S0305004100070596 [17] Hall T., Nonlinearity 7 (3) pp 861– (1994) · Zbl 0806.58015 · doi:10.1088/0951-7715/7/3/008 [18] Hall T., New invariants and entropy bounds for partially formed horseshoes (1994) [19] Hulme H., Ph.D. thesis, in: Finite and infinite braids: a dynamical systems approach (2000) [20] Holmes P., Arch. Rational Mech. Anal. 90 (2) pp 115– (1985) · Zbl 0593.58027 · doi:10.1007/BF00250717 [21] Katok A., Inst. Hautes Etudes Sci. Publ. Math. 51 pp 137– (1980) · Zbl 0445.58015 · doi:10.1007/BF02684777 [22] Los J., Proc. London Math. Soc. (3) 66 (2) pp 400– (1993) · Zbl 0788.58039 · doi:10.1112/plms/s3-66.2.400 [23] Smale S., Bull. Amer. Math. Soc. 73 pp 747– (1967) · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1 [24] Thurston W., Bull. Amer. Math. Soc. (N.S.) 19 (2) pp 417– (1988) · Zbl 0674.57008 · doi:10.1090/S0273-0979-1988-15685-6 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.