×

On the first two Vassiliev invariants. (English) Zbl 1116.57300

Summary: The values that the first two Vassiliev invariants take on prime knots with up to fourteen crossings are considered. This leads to interesting fish-like graphs. Several results about the values taken on torus knots are proved.

MSC:

57M27 Invariants of knots and \(3\)-manifolds (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid EuDML

References:

[1] Alvarez M., J. Knot Theory Ramifications 5 pp 779– (1996) · Zbl 0871.57004
[2] Bar-Natan D., Math. Res. Lett. 2 pp 239– (1995)
[3] Birman J., Invent. Math. 111 pp 225– (1993) · Zbl 0812.57011
[4] Burde G., Knots. (1980)
[5] Dasbach O. T., Comm. Math. Phys. 224 (2) pp 427– (2001) · Zbl 0991.57012
[6] Dean J., J. Knot Theory Ramifications 3 pp 7– (1994) · Zbl 0816.57009
[7] Domergue M., J. Knot Theory Ramifications 5 pp 23– (1996) · Zbl 0868.57010
[8] Hoste J., Knotscape (1999)
[9] Kronheimer P., Topology 32 pp 773– (1993) · Zbl 0799.57007
[10] Lannes J., Enseign. Math. (2) 39 pp 295– (1993)
[11] Lin X.-S., J. Differential Geom. 44 pp 74– (1996)
[12] Maple symbolic computation software (1981)
[13] Murasugi K., Trans. Amer. Math. Soc. 326 (1) pp 237– (1991) · Zbl 0751.57008
[14] Okuda N., Master’s thesis, in: On the first two Vassiliev invariants of some sequences of knots. (2002)
[15] Polyak M., International Mathematical Research Notes 11 pp 445– (1994) · Zbl 0851.57010
[16] Polyak M., J. Knot Theory Ramifications 10 (5) pp 711– (2001) · Zbl 0997.57021
[17] T. Stanford Computer programs and data tables are available online at
[18] Stanford T., Pacific J. Math. 174 pp 269– (1996)
[19] Stanford T., Topology Appl. 77 pp 261– (1997) · Zbl 0878.57009
[20] Trapp R., J. Knot Theory Ramifications 3 pp 391– (1994) · Zbl 0841.57019
[21] Vassiliev V. A., Complements of discriminants of smooth maps: topology and applications (1992)
[22] Willerton S., PhD thesis, in: On the Vassiliev invariants for knots and for pure braids. (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.