He, Zheng-Xu On the minimizers of the Möbius cross energy of links. (English) Zbl 1116.58300 Exp. Math. 11, No. 2, 244-248 (2002). Summary: We give a geometric interpretation for the Euler-Lagrange equation for the Möbius cross energy of (nontrivially linked) 2-component links in the euclidean 3-space. The minimizer of this energy is conjectured to be a Hopf link of 2 round circles. We prove some elementary properties of the minimizers using the Euler-Lagrange equations. In particular, we give a rigorous proof of the fact that the minimizer is topologically a Hopf link. Cited in 2 Documents MSC: 58E10 Variational problems in applications to the theory of geodesics (problems in one independent variable) 49J10 Existence theories for free problems in two or more independent variables 57M25 Knots and links in the \(3\)-sphere (MSC2010) Keywords:Möbius cross energy; Hopf link × Cite Format Result Cite Review PDF Full Text: DOI Euclid EuDML References: [1] Abrams A., ”Circles minimize most knot energies,” (2000) · Zbl 1030.57006 [2] DOI: 10.1016/S0166-8641(97)00211-3 · Zbl 0924.57012 · doi:10.1016/S0166-8641(97)00211-3 [3] Cantarella J., J. Math. Physics 41 (8) pp 5615– (2000) · Zbl 1054.78500 · doi:10.1063/1.533429 [4] Cantarella J., ”Influence of geometry and topology on helicity,” (1998) [5] Diao Y., ”The lower bounds of the lengths of thick knots,” (2001) · Zbl 1028.57007 [6] Freedman M. H., Annals of Mathematics 134 (1) pp 189– (1991) · Zbl 0746.57011 · doi:10.2307/2944336 [7] Freedman M. H., Annals of Mathematics 139 (1) pp 1– (1994) · Zbl 0817.57011 · doi:10.2307/2946626 [8] He Z.-X., Comm, on Pure and Appl. Math. 53 (4) pp 399– (2000) · Zbl 1042.53043 · doi:10.1002/(SICI)1097-0312(200004)53:4<399::AID-CPA1>3.0.CO;2-D [9] Kim D., Experimental Mathematics 2 (1) pp 1– (1993) · Zbl 0818.57007 · doi:10.1080/10586458.1993.10504264 [10] Kusner R. B., Geometric Topology (Athens, GA, 1993) pp 570– (1997) [11] Kusner R. B., Topology and geometry in polymer science (Minneapolis, MN, 1996) pp 67– (1998) · doi:10.1007/978-1-4612-1712-1_7 [12] DOI: 10.1016/0040-9383(91)90010-2 · Zbl 0733.57005 · doi:10.1016/0040-9383(91)90010-2 [13] O’Hara J., Ideal Knots (Series on Knots and Everything) 19 pp 288– (1998) · doi:10.1142/9789812796073_0016 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.