zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New conjugacy condition and related new conjugate gradient methods for unconstrained optimization. (English) Zbl 1116.65069
The authors study the conjugate gradient method for solving large-scale nonlinear optimization problems. In the first two sections, the authors present the necessary background relating to conjugate methods in general and choices for the conjugacy condition. The third section contains the main contribution of this paper which is a new conjugacy condition derived by the authors using a new quasi-Newton equation. This equation uses not only the gradient value information but also the information relating to the function value. Several theorems are then presented, with proof, which include the properties of the proposed conjugacy condition and a study of the properties (e.g., convergence) of the derived algorithm. The paper concludes with a section containing the results of the performed numerical experimentation and a list of relevant references.

65K05Mathematical programming (numerical methods)
90C26Nonconvex programming, global optimization
90C30Nonlinear programming
90C53Methods of quasi-Newton type
Full Text: DOI
[1] Al-Baali, A.: Descent property and global convergence of the fletcher -- reeves method with inexact line search. IMA J. Numer. anal. 5, 121-124 (1985) · Zbl 0578.65063
[2] Armijo, L.: Minimization of functions having Lipschitz conditions partial derivatives. Pacific J. Math. 16, 1-3 (1966) · Zbl 0202.46105
[3] X. Chen, J. Sun, Global convergence of two-parameter family of conjugate gradient methods without line search, J. Comput. Appl. Math. 146 (2002) 37 -- 45. · Zbl 1018.65081
[4] Y. Dai, Convergence of Polak -- Ribière -- Polyak conjugate gradient method with constant stepsizes, Manuscript, Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, 2001.
[5] Dai, Y.; Han, J.; Liu, G.; Sun, D.; Yin, H.; Yan, Y.: Convergence properties of nonlinear conjugate methods. SIAM J. Optim. 2, 345-358 (1999) · Zbl 0957.65062
[6] Dai, Y.; Liao, L. Z.: New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. math. Optim. 43, 87-101 (2001) · Zbl 0973.65050
[7] Y. Dai, Y. Yuan, Further studies on the Polak -- Ribière -- Polyak method, Research Report ICM-95-040, Institute of Computational Mathematics and Scientific/ Engineering Computing, Chinese Academy of Sciences, 1995.
[8] Dai, Y.; Yuan, Y.: Nonlinear conjugate gradient methods. (2000)
[9] Gibert, J. C.; Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optim. 2, 21-42 (1992) · Zbl 0767.90082
[10] Moreau, J. J.: Proximite et dualite dans un espace hilbertien. Bull. soc. Math. France 93, 273-299 (1965) · Zbl 0136.12101
[11] Morè, J. J.; Garbow, B. S.; Hillstrome, K. E.: Testing unconstrained optimization software. AVM trans. Math. software 7, 17-41 (1981) · Zbl 0454.65049
[12] Nocedal, J.: Conjugate gradient methods and nonlinear optimization. Linear and nonlinear conjugate gradient related methods, 9-23 (1995) · Zbl 0866.65037
[13] Powell, M. J. D.: Restart procedures for the conjugate gradient method. Math. programming 12, 241-254 (1977) · Zbl 0396.90072
[14] M.J.D. Powell, Nonconvex Minimization Calculations and the Conjugate Gradient Method, in: Lecture Notes in Mathematics, vol. 1066, Springer, Berlin, 1984, pp. 122 -- 141. · Zbl 0531.65035
[15] Z. Wei, G. Li, L. Qi, New quasi-newton methods for unconstrain optimization, preprint.
[16] Wei, Z.; Qi, L.: Convergence analysis of a proximal Newton method. Numer. funct. Anal. optim. 17, 463-472 (1996) · Zbl 0884.90123
[17] Wei, Z.; Qi, L.; Birge, J. R.: A new method for nonsmooth convex optimization. J. inequalities appl. 2, 157-179 (1998) · Zbl 0903.90131
[18] Wei, Z.; Yu, G.; Yuan, G.; Lian, Z.: The superlinear convergence of a modified BFGS-type method for unconstrained optimization. Comput. optim. Appl. 29, No. 3, 315-332 (2004) · Zbl 1070.90089
[19] Wolfe, P.: Convergence conditions for ascent methods. SIAM rev. 11, 226-235 (1969) · Zbl 0177.20603
[20] Wolfe, P.: Convergence conditions for ascent methods II: Some corrections. SIAM rev. 11, 185-188 (1971) · Zbl 0216.26901
[21] Zoutendijk, G.: Nonlinear programming computational methods. Integer and nonlinear programming, 37-86 (1970) · Zbl 0336.90057