zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new global optimization algorithm for signomial geometric programming via Lagrangian relaxation. (English) Zbl 1116.65071
Summary: A global optimization algorithm, which relies on the exponential variable transformation of the signomial geometric programming (SGP) and the Lagrangian duality of the transformed programming, is proposed for solving the signomial geometric programming (SGP). The difficulty in utilizing Lagrangian duality within a global optimization context is that the restricted Lagrangian function for a given estimate of the Lagrangian multipliers is often nonconvex. Minimizing a linear underestimation of the restricted Lagrangian overcomes this difficulty and facilitates the use of Lagrangian duality within a global optimization framework. In the new algorithm the lower bounds are obtained by minimizing the linear relaxation of restricted Lagrangian function for a given estimate of the Lagrange multipliers. A branch-and-bound algorithm is presented that relies on these Lagrangian relaxations to provide lower bounds and on the interval Newton method to facilitate convergence in the neighborhood of the global solution. Computational results show that the algorithm is efficient.

MSC:
65K05Mathematical programming (numerical methods)
WorldCat.org
Full Text: DOI
References:
[1] Hensen, P.; Jaumard, B.: Reduction of indefinite quadratic programs to bilinear programs. Journal of global optimization 2, No. 1, 41-60 (1992) · Zbl 0786.90050
[2] Beightler, C. S.; Philips, D. T.: Applied geometric programming. (1976)
[3] Avriel, M.; Williams, A. C.: An extension of geometric programming with applications in engineering optimization. Journal of engineering mathematics 5, No. 3, 187-199 (1971)
[4] Jefferson, T. R.; Scott, C. H.: Generalized geometric programming applied to problems of optimal control: I. Theory. Jota 26, 117-129 (1978) · Zbl 0369.90120
[5] Jha, N. K.: Geometric programming based robot control design. Computers and industrial engineering 29, No. 1 -- 4, 631-635 (1995)
[6] Ssnmez, A. I.; Baykasoglu, A.; Dereti, T.; Filiz, I. H.: Dynamic optimization of multipass milling operations via geometric programming. International journal of machine tools and manufacture 39, 297-320 (1999)
[7] Scott, C. H.; Jefferson, T. R.: Allocation of resources in project management. International journal on systems science 26, 413-420 (1995) · Zbl 0821.90069
[8] Maranas, C. D.; Floudas, C. A.: Global optimization in generalized geometric programming. Computers and chemical engineering 21, No. 4, 351-369 (1997)
[9] Rijckaert, M. J.; Martens, X. M.: Analysis and optimization of the Williams -- otto process by geometric programming. AICHE journal 20, No. 4, 742-750 (1974)
[10] Choi, J. C.; Bricker, D. L.: Effectiveness of a geometric programming algorithm for optimization of machining economics models. Computers operations research 23, No. 10, 961-975 (1996) · Zbl 0873.90043
[11] Barrel, H. E.; Dykstra, R. L.: Restricted multinomial maximum likelihood estimation based upon Fenchel duality. Statistics and probability letters 21, 121-130 (1994) · Zbl 0801.62033
[12] D.L. Bricker, K.O. Kortanek, L. Xu, Maximum likelihood estimates with order restrictions on probabilities and odds ratios: a geometric programming approach, in: Applied Mathematical and Computational Science, The University of Iowa, Iowa City, IA, 1995. · Zbl 0953.62027
[13] Passy, U.: Generalized weighted mean programming. SIAM journal on applied mathematics 20, 763-778 (1971) · Zbl 0233.90021
[14] Passy, U.; Wilde, D. J.: Generalized polynomial optimization. Journal on applied mathematics. 15, No. 5, 1344-1356 (1967) · Zbl 0171.18002
[15] Kortanek, K. O.; Xu, X.; Ye, Y.: An infeasible interior-point algorithm for solving primal and dual geometric programs. Mathematic programming 76, 155-181 (1997) · Zbl 0881.90106
[16] Floudas, C. A.; Visweswaran, V.: Quadratic optimization. Nonconvex optimization and its applications, 217-270 (1995) · Zbl 0833.90091
[17] Sherali, H. D.: Global optimization of nonconvex polynomial programming problems having rational exponents. Journal of global optimization 12, 267-283 (1998) · Zbl 0905.90146
[18] Sherali, H. D.: A reformulation -- convexification approach for solving nonconvex quadratic programming problems. Journal of global optimization 7, 1-31 (1995) · Zbl 0844.90064
[19] Ben-Tal, A.; Eiger, G.; Gershovitz, V.: Global minimization by reducing the duality gap. Mathematical programming 63, 193-212 (1994) · Zbl 0807.90101
[20] Dur, M.; Horst, R.: Lagrange duality and partitioning techniques in nonconvex global optimization. Journal of optimization theory and applications 95, 347-369 (1997) · Zbl 0892.90162
[21] Barrientos, O.; Correa, R.: An algorithm for global minimization of linearly constrained quadratic functions. Journal of global optimization 16, 77-93 (2000) · Zbl 0958.90066
[22] Duffin, R. J.; Peterson, E. L.: Geometric programming with signomial. Journal of optimization theory and applications 11, No. 1, 3-35 (1973) · Zbl 0238.90069
[23] Rijckaert, M. J.; Martens, X. M.: Comparison of generalized geometric programming algorithms. Journal of optimization theory and application 26, 205-241 (1978) · Zbl 0369.90112
[24] Lin, Y.; Stadtherr, M. A.: Advances in interval methods for deterministic global optimization in chemical engineering. Journal of global optimization 29, 281-296 (2004) · Zbl 1065.65076
[25] Revol, N.: Interval Newton iteration in multiple precision for the univariate case. Numerical algorithms 34, 417-726 (2003) · Zbl 1035.65051