zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The convergence properties of some new conjugate gradient methods. (English) Zbl 1116.65073
A new conjugate gradient formula $\beta^*_k$ is given to compute the search directions for unconstrained optimization problems. General convergence results for the proposed formula with exact Wolfe-Powell line search and Grippo-Lucidi line search. Under these line searches and some assumptions, the global convergence properties of the given methods are discussed. The given formula $\beta^*_k\ge 0$ has the similar form as $\beta^{PRP}_k$. Some numerical results show that the proposed methods are efficient.

MSC:
65K05Mathematical programming (numerical methods)
90C59Approximation methods and heuristics
90C30Nonlinear programming
WorldCat.org
Full Text: DOI
References:
[1] Hestenes, M. R.; Stiefel, E.: Method of conjugate gradient for solving linear equations. J. res. Nat. bur. Stand. 49, 409-436 (1952) · Zbl 0048.09901
[2] Polak, B. T.: The conjugate gradient method in extreme problems. USSR comput. Math. math. Phys. 9, 94-112 (1969)
[3] Polak, E.; Ribire, G.: Note sur la xonvergence de directions conjugees. Rev francaise informat recherche operatinelle 3e annee 16, 35-43 (1969)
[4] Liu, G.; Han, J.; Yin, H.: Global convergence of the fletcher -- reeves algorithm with inexact line search. Appl. math. JCN 10B, 75-82 (1995) · Zbl 0834.90122
[5] Gilbert, J. C.; Nocedal, J.: Global convergence properties of conjugate gradient methods for optimization. SIAM J. Optimizat. 2, No. 1, 21-42 (1992) · Zbl 0767.90082
[6] Grippo, L.; Lucidi, S.: A globally convergence version of the polak -- ribiere conjugate gradient method. Math. prog. 78, 375-391 (1997) · Zbl 0887.90157
[7] Powell, M. J. D.: Restart procedures of the conjugate gradient method. Math. program. 2, 241-254 (1997) · Zbl 0396.90072
[8] Powell, M. J. D.: Nonconvex minimization calculations and the conjugate gradient method. Lecture notes in mathematics 1066 (1984) · Zbl 0531.65035
[9] Polak, E.; Ribiere, G.: Note sur la convergence de methodes des directions conjugées. Revue francaise d informatique et recherche, opérationelle 16, 35-43 (1969)
[10] Fletcher, R.; Reeves, C.: Function minimization by conjugate gradients. Comput. J. 7, 149-154 (1964) · Zbl 0132.11701
[11] Ahmed, T.; Storey, D.: Efficient hybrid conjugate gradient techniques. J. optimizat. Theory appl. 64, 379-394 (1990) · Zbl 0666.90063
[12] Dai, Y. H.; Yuan, Y.: Nonlinear conjugate gradient methods. (1998) · Zbl 0914.90219
[13] Dai, Y. H.; Yuan, Y.: Convergence properties of the fletcher -- reeves method. IMA J. Numer. anal. 16, No. 2, 155-164 (1996) · Zbl 0851.65049
[14] Li, Z. F.; Chen, J.; Deng, N. Y.: Convergence properties of conjugate gradient methods with goldstein line searches. J. China agric. Univer. 1, No. 4, 15-18 (1996)