Wei, Zengxin; Yao, Shengwei; Liu, Liying The convergence properties of some new conjugate gradient methods. (English) Zbl 1116.65073 Appl. Math. Comput. 183, No. 2, 1341-1350 (2006). A new conjugate gradient formula \(\beta^*_k\) is given to compute the search directions for unconstrained optimization problems. General convergence results for the proposed formula with exact Wolfe-Powell line search and Grippo-Lucidi line search. Under these line searches and some assumptions, the global convergence properties of the given methods are discussed. The given formula \(\beta^*_k\geq 0\) has the similar form as \(\beta^{PRP}_k\). Some numerical results show that the proposed methods are efficient. Reviewer: Stefan Mititelu (Bucureşti) Cited in 9 ReviewsCited in 69 Documents MSC: 65K05 Numerical mathematical programming methods 90C59 Approximation methods and heuristics in mathematical programming 90C30 Nonlinear programming Keywords:nonlinear optimization; conjugate gradient; exact line search; inexact line search; global convergence; unconstrained optimization problem; numerical results PDF BibTeX XML Cite \textit{Z. Wei} et al., Appl. Math. Comput. 183, No. 2, 1341--1350 (2006; Zbl 1116.65073) Full Text: DOI OpenURL References: [1] Hestenes, M.R.; Stiefel, E., Method of conjugate gradient for solving linear equations, J. res. nat. bur. stand., 49, 409-436, (1952) · Zbl 0048.09901 [2] Polak, B.T., The conjugate gradient method in extreme problems, USSR comput. math. math. phys., 9, 94-112, (1969) [3] Polak, E.; Ribire, G., Note sur la xonvergence de directions conjugees, Rev francaise informat recherche operatinelle 3e annee, 16, 35-43, (1969) [4] Liu, G.; Han, J.; Yin, H., Global convergence of the fletcher – reeves algorithm with inexact line search, Appl. math. JCN, 10B, 75-82, (1995) · Zbl 0834.90122 [5] Gilbert, J.C.; Nocedal, J., Global convergence properties of conjugate gradient methods for optimization, SIAM J. optimizat., 2, 1, 21-42, (1992) · Zbl 0767.90082 [6] Grippo, L.; Lucidi, S., A globally convergence version of the polak – ribiere conjugate gradient method, Math. prog., 78, 375-391, (1997) · Zbl 0887.90157 [7] Powell, M.J.D., Restart procedures of the conjugate gradient method, Math. program., 2, 241-254, (1997) · Zbl 0396.90072 [8] Powell, M.J.D., Nonconvex minimization calculations and the conjugate gradient method, Lecture notes in mathematics, vol. 1066, (1984), Springer Berlin, pp. 122-141 · Zbl 0531.65035 [9] Polak, E.; Ribiere, G., Note sur la convergence de methodes des directions conjugées, Revue francaise d informatique et recherche, opérationelle, 16, 35-43, (1969) · Zbl 0174.48001 [10] Fletcher, R.; Reeves, C., Function minimization by conjugate gradients, Comput. J., 7, 149-154, (1964) · Zbl 0132.11701 [11] Ahmed, T.; Storey, D., Efficient hybrid conjugate gradient techniques, J. optimizat. theory appl., 64, 379-394, (1990) · Zbl 0666.90063 [12] Dai, Y.H.; Yuan, Y., Nonlinear conjugate gradient methods, (1998), Shanghai Scientific and Technical Publishers, pp. 37-48 [13] Dai, Y.H.; Yuan, Y., Convergence properties of the fletcher – reeves method, IMA J. numer. anal., 16, 2, 155-164, (1996) · Zbl 0851.65049 [14] Li, Z.F.; Chen, J.; Deng, N.Y., Convergence properties of conjugate gradient methods with goldstein line searches, J. China agric. univer., I, 4, 15-18, (1996) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.