zbMATH — the first resource for mathematics

Plate theory for stressed heterogeneous multilayers of finite bending energy. (English) Zbl 1116.74034
Summary: We derive a plate theory for (possibly slightly stressed) heterogeneous multilayers in the regime of finite bending energies from three-dimensional elasticity theory by means of \(\Gamma\)-convergence. This extends results in [G. Friesecke, R. D. James and S. Müller, Commun. Pure Appl. Math. 55, No. 11, 1461–1506 (2002; Zbl 1021.74024); B. Schmidt, Calc. Var. Partial Differ. Equ. 30, No. 4, 477–497 (2007; Zbl 1129.49045)] to non-homogeneous materials. As expected from the homogeneous case, we obtain a limiting energy functional depending on the second fundamental form of the plate surface. The effective elastic constants of the heterogeneous films turn out to depend on the moments of the pointwise elastic constants of the materials.

74K20 Plates
74E05 Inhomogeneity in solid mechanics
74Q15 Effective constitutive equations in solid mechanics
74G65 Energy minimization in equilibrium problems in solid mechanics
Full Text: DOI
[1] Anzellotti, G.; Baldo, S.; Percivale, D., Dimension reduction in variational problems, asymptotic development in γ-convergence and thin structures in elasticity, Asymptot. anal., 9, 61-100, (1994) · Zbl 0811.49020
[2] Braides, A.; Fonseca, I.; Francfort, G., 3D-2D asymptotic analysis for inhomogeneous thin films, Indiana univ. math. J., 49, 1367-1404, (2000) · Zbl 0987.35020
[3] Ciarlet, P.G., Mathematical elasticity, vol. II: theory of plates, (1997), North-Holland Amsterdam · Zbl 0888.73001
[4] Dal Maso, G., An introduction to γ-convergence, (1993), Birkhäuser Boston · Zbl 0816.49001
[5] Euler, L., Methodus inveniendi lineas curvas, additamentum I: de curvis elasticis (1744), (), 231-297
[6] L.C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, Conference Board of the AMS, Providence, RI, 1990
[7] Friesecke, G.; James, R.D.; Müller, S., Rigorous derivation of nonlinear plate theory and geometric rigidity, C. R. acad. sci. Paris, 334, 173-178, (2002) · Zbl 1012.74043
[8] Friesecke, G.; James, R.D.; Müller, S., A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity, Comm. pure appl. math., 55, 1461-1506, (2002) · Zbl 1021.74024
[9] Friesecke, G.; James, R.D.; Müller, S., A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence, Arch. rational mech. anal., 180, 183-236, (2006) · Zbl 1100.74039
[10] Friesecke, G.; James, R.D.; Mora, M.G.; Müller, S., Derivation of nonlinear bending theory for shells from three-dimensional nonlinear elasticity by gamma-convergence, C. R. acad. sci. Paris, 336, 697-702, (2003) · Zbl 1140.74481
[11] Friesecke, G.; James, R.D.; Mora, M.G.; Müller, S., Derivation of the nonlinear bending-torsion theory for inextensible rods by γ-convergence, Calc. var. partial differential equations, 18, 287-305, (2003) · Zbl 1053.74027
[12] Grundmann, M., Nanoscroll formation from strained layer heterostructures, Appl. phys. lett., 83, 2444-2446, (2003)
[13] Hornung, P., Approximating \(W^{2, 2}\) isometric immersions, Preprint Univ. Duisburg-Essen (2007)
[14] T. von Kármán, Festigkeitsprobleme im Maschinenbau, in: Encyclopädie der Mathematischen Wissenschaften, vol. IV/4, Leipzig, 1910, pp. 311-385
[15] B. Kirchheim, Geometry and rigidity of microstructures, Habilitation thesis, University of Leipzig, 2001 · Zbl 1140.74303
[16] Kirchhoff, G., Über das gleichgewicht und die bewegung einer elastischen scheibe, J. reine angew. math., 40, 51-88, (1850)
[17] Le Dret, H.; Raoult, A., La modèle membrane non-linéaire comme limite variationnelle de l’élasticité non linéaire tridimensionnelle, C. R. acad. sci. Paris, 317, 221-226, (1993) · Zbl 0781.73037
[18] Le Dret, H.; Raoult, A., The nonlinear membrane model as a variational limit of three-dimensional elasticity, J. math. pures appl., 74, 549-578, (1995) · Zbl 0847.73025
[19] Le Dret, H.; Raoult, A., The membrane shell model in nonlinear elasticity: a variational asymptotic derivation, J. nonlinear sci., 6, 59-84, (1996) · Zbl 0844.73045
[20] Love, A.E.H., A treatise on the mathematical theory of elasticity, (1927), Cambridge Univ. Press Cambridge · Zbl 0063.03651
[21] Paetzelt, H.; Gottschalch, V.; Bauer, J.; Herrnberger, H.; Wagner, G., Fabrication of A(III)-B(II) nano- and microtubes using MOVPE grown materials, Phys. stat. sol. (A), 203, 817-824, (2006)
[22] Hartman, P.; Nirenberg, L., On spherical image maps whose Jacobians do not change signs, Amer. J. math., 81, 901-920, (1959) · Zbl 0094.16303
[23] Pakzad, M.R., On the Sobolev space of isometric immersions, J. differential geom., 66, 47-69, (2004) · Zbl 1064.58009
[24] Pantz, O., Un justification partielle du modèle de plaque en flexion par γ-convergence, C. R. acad. sci. Paris Sér. I math., 332, 587-592, (2001) · Zbl 1033.74028
[25] Pogorelov, A.V., Extensions of the theorem of Gauss on the spherical representation to the case of surfaces of bounded extrinsic curvature, Dokl. akad. nauk SSSR (N.S.), 111, 945-947, (1956) · Zbl 0072.39901
[26] Pogorelov, A.V., Extrinsic geometry of convex surfaces, (1973), Amer. Math. Soc. Providence, RI · Zbl 0311.53067
[27] B. Schmidt, Minimal energy configurations of strained multi-layers, Calc. Var. Partial Differential Equations (2007), doi:10.1007/s00526-007-0099-4
[28] B. Schmidt, Effective theories for thin elastic films, PhD thesis, University of Leipzig, 2006
[29] Schmidt, O.G.; Eberl, K., Thin solid films roll up into nanotubes, Nature, 410, 168, (2001)
[30] Shu, Y.C., Heterogeneous thin films of martensitic materials, Arch. ration. mech. anal., 153, 39-90, (2000) · Zbl 0959.74043
[31] Tsui, J.C.; Clyne, T.W., An analytical model for predicting residual stress in progressively deposited coatings I, Thin solid films, 306, 23-33, (1997)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.