×

Exact boundary controllability of unsteady flows in a tree-like network of open canals. (Contrôlabilité exacte frontière de l’écoulememt d’un fluide non-stationnaire dans un réseau du type d’arbre de canaux ouverts.) (French. Abridged English version) Zbl 1116.93311

Summary: Using the theory of semi-global piecewise \(C^1\) solution, we establish the exact boundary controllability of unsteady flows in a tree-like network of open canals with general topology.

MSC:

93B05 Controllability
35Q35 PDEs in connection with fluid mechanics
76B75 Flow control and optimization for incompressible inviscid fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gugat, M.; Leugering, G., Ann. Inst. H. Poincaré Non Linéaire, 20, 1, 1-11 (2003) · Zbl 1032.93030
[2] de Halleux, J.; Prieur, C.; Coron, J.-M.; d’Andréa-Novel, B.; Bastin, G., Automatica, 39, 1365-1376 (2003) · Zbl 1175.93108
[3] Leugering, G.; Schmidt, E. G., SIAM J. Control Optim., 41, 164-180 (2002) · Zbl 1024.76009
[4] T.T. Li, Exact boundary controllability of unsteady flows in a network of open canals, Math. Nachr., in press; T.T. Li, Exact boundary controllability of unsteady flows in a network of open canals, Math. Nachr., in press · Zbl 1119.93312
[5] Li, T. T., Math. Methods Appl. Sci., 27, 1089-1114 (2004) · Zbl 1151.93316
[6] Li, T. T.; Jin, Y., Chinese Ann. Math. Ser. B, 22, 325-336 (2001) · Zbl 1005.35058
[7] Li, T. T.; Rao, B. P., Chinese Ann. Math. Ser. B, 23, 209-218 (2002) · Zbl 1184.35196
[8] Li, T. T.; Rao, B. P., SIAM J. Control Optim., 41, 1748-1755 (2003) · Zbl 1032.35124
[9] Li, T. T.; Yu, W. C., Boundary Value Problems for Quasilinear Hyperbolic Systems, Duke University Mathematics Series, vol. V (1985) · Zbl 0627.35001
[10] Li, T. T.; Yu, L. X., Chinese Ann. Math. Ser. B, 24, 415-422 (2003) · Zbl 1045.35044
[11] Li, T. T.; Rao, B. P.; Jin, Y., C. R. Acad. Sci. Paris, Ser. I, 333, 219-224 (2001) · Zbl 1031.93099
[12] De Saint-Venant, B., C. R. Acad. Sci., 73, 147-154 (1871), 237-240
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.