The Beurling-Nyman criterion for the Riemann hypothesis: numerical aspects. (Le critère de Beurling et Nyman pour l’hypothèse de Riemann: aspects numérique.) (French) Zbl 1117.11305

Summary: Let \(\mathcal B\) be the subspace of \(\mathcal H=L^2(0,+\infty)\) consisting of the functions \(f\) such that \[ f(t)=\sum_{k=1}^{n} c_{k} \rho \left( \frac{\theta_{k}}{t} \right), \; n\in\mathbb N,\; c_{k}\in\mathbb C,\; 0<\theta_{k}\leq 1,\;\text{ for } 1 \leq k \leq n, \] where \(\rho(t)\) denotes the fractional part of \(t\). We also denote by \(\chi\) the characteristic function of \((0,1]\). A well known result of Nyman and Beurling implies that the Riemann hypothesis holds if and only if \(d(\chi,\mathcal B) = 0\). We present several numerical results about the approximation of \(\chi\) by elements of \(\mathcal B\).


11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses
Full Text: DOI Euclid EuDML


[1] Báez-Duarte L., ”Arithmetical Aspects of Beurling’s Real Variable Reformulation of the Riemann Hypothesis.” · Zbl 0795.11035
[2] Báez-Duarte L., ”A strengthening of the Nyman-Beurling criterion for the Riemann Hypothesis.” · Zbl 1097.11041
[3] Báez-Duarte L., Advances in Math. 149 pp 130– (2000) · Zbl 1008.11032 · doi:10.1006/aima.1999.1861
[4] Balazard, M. and Saias, E. 1998. [Balazard et Saias 98], Notes manuscrites
[5] Beurling A., Proc. Nat. Acad. Sci. 41 pp 312– (1955) · Zbl 0065.30303 · doi:10.1073/pnas.41.5.312
[6] Burnol J.-F., Advances in Math. 170 pp 56– (2002) · Zbl 1029.11045 · doi:10.1006/aima.2001.2066
[7] Nyman B., On the One-Dimensional Translation Group and Semi-Group in Certain Function Spaces (1950) · Zbl 0037.35401
[8] Richard F., L’hypothèse de Riemann selon Beurling et Nyman (2000)
[9] Rosser B., Proc. London Math. Soc. (2) 45 pp 21– (1939) · Zbl 0019.39401 · doi:10.1112/plms/s2-45.1.21
[10] Selberg, A. 1946.”The zeta-function ant the Riemann hypothesis.”187–200. [Selberg 46], in C. R. Dixième congrès Math. Scandinaves, Copenhague
[11] Titchmarsh E. C., The theory of the Riemann zeta-function (1986) · Zbl 0601.10026
[12] Vasyunin V. I., St. Petersburg Math. J. 7 (3) pp 405– (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.