zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Laguerre-type special functions and population dynamics. (English) Zbl 1117.33001
Recently, in a series of papers, P. E. Ricci and his collaborators investigated some Laguerre-type special functions obtained by the use of the Laguerre derivative operators (containing $n+1$ derivatives): $$D_{nL}:=Dx\ldots DxDxD.$$ In this paper, the authors introduce new Laguerre type population dynamics models by substituting in classical models the ordinary derivatives with the Laguerre derivatives. The eigenfunctions of $D_{nL}$ are useful in order to approximate different behavior of population growth. The corresponding Laguerre-type of modified logistic, Bernoulli, Gompertz, Allee and Beverton-Holt models were considered. It was shown for these cases that the oscillating asymptotic behavior of solutions takes the place of the ordinary monotonic one.

33B10Exponential and trigonometric functions
33C45Orthogonal polynomials and functions of hypergeometric type
Full Text: DOI
[1] Abramowitz, M.; Stegun, I. A.: Handbook of mathematical functions, with formulas, graphs, and mathematical tables. (1965) · Zbl 0171.38503
[2] Alee, W. C.: Animal aggregations. (1931)
[3] P. Appell, J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques. Polynômes d’Hermite, Gauthier-Villars, Paris, 1926.
[4] Y. Ben Cheikh, Some results on quasi-monomiality, in: H.M. Srivastava, G. Dattoli, P.E. Ricci, Guest Editors, Proc. Workshop ”Advanced Special Functions and Related Topics in Differential Equations”, Melfi, June 24 -- 29, 2001, Appl. Math. Comput. 141, 2003, 63 -- 76.
[5] A. Bernardini, G. Dattoli, P.E. Ricci, L-exponentials and higher order Laguerre polynomials, in: Proceedings of the Fourth International Conference of the Society for Special Functions and their Applications (SSFA), Soc. Spec. Funct. Appl., Chennai, 2003, 13 -- 26. · Zbl 1077.33010
[6] Cesarano, C.; Germano, B.; Ricci, P. E.: Laguerre-type Bessel functions. Integral transform. Spec. funct. 16, No. 4, 315-322 (2005) · Zbl 1080.33006
[7] Clark, C. W.: Mathematical bioeconomics. (1976) · Zbl 0364.90002
[8] De Andreis, S.; Ricci, P. E.: Modelling population growth via Laguerre-type exponentials. Math. comput. Modelling 42, 1421-1428 (2005) · Zbl 1090.92037
[9] Dattoli, G.; Ottaviani, P. L.; Torre, A.; Vázquez, L.: Evolution operator equations: integration with algebraic and finite difference methods. Applications to physical problems in classical and quantum mechanics and quantum field theory. Riv. nuovo cimento 2, 1-133 (1997)
[10] Dattoli, G.: Hermite -- Bessel and Laguerre -- Bessel functions: a by-product ot the monomiality principle. Proceedings of the melfi school on advanced topics in mathematics and physics; melfi, 9 -- 12 May 1999, 147-164 (2000)
[11] Dattoli, G.; Ricci, P. E.: Laguerre-type exponentials and the relevant L-circular and L-hyperbolic functions. Georgian math. J. 10, 481-494 (2003) · Zbl 1045.33001
[12] Gause, G. F.: Verifications sperimentales de la théorie mathématique de la lutte pour la vie. Actualités scientifiques et industrielles 277 (1935)
[13] Gould, H. W.; Hopper, A. T.: Operational formulas connected with two generalizations of Hermite polynomials. Duke math. J. 29, 51-62 (1962) · Zbl 0108.06504
[14] Murray, J.: Mathematical biology. (1989) · Zbl 0682.92001
[15] Srivastava, H. M.; Manocha, H. L.: A treatise on generating functions. (1984) · Zbl 0535.33001
[16] Thieme, H. R.: Mathematics in population biology. (2003) · Zbl 1054.92042
[17] Widder, D. V.: The heat equation. (1975) · Zbl 0322.35041