zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some mathematical constants. (English) Zbl 1117.33003
This expository paper describes the appearance of various mathematical constants related to the Gamma function and multiple Gamma functions. The most famous of these is Euler’s constant $\gamma$, and the author lists many integral and series representations for $\gamma$, as well as infinite product formulas containing $\gamma$. Among other constants treated are the Glaisher-Kinkelin constant $A$, the Bendersky-Adamchik constants $B$ and $C$, and related families of constants.

MSC:
33B15Gamma, beta and polygamma functions
WorldCat.org
Full Text: DOI
References:
[1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Applied Math. Ser. 55, National Bureau of Standards, Washington, DC, 1964; reprinted by Dover Publications, New York, 1965. · Zbl 0171.38503
[2] Adamchik, V. S.: Polygamma functions of negative order. J. comput. Appl. math. 100, 191-199 (1998) · Zbl 0936.33001
[3] Adamchik, V. S.: On the Barnes function. Proceedings of the 2001 international symposium on symbolic and algebraic computation (London, Ontario; July 22 -- 25, 2001) (2001) · Zbl 1196.65042
[4] Adamchik, V. S.: The multiple gamma function and its application to computation of series. The Ramanujan J. 9, 271-288 (2005) · Zbl 1088.33014
[5] Alexeiewsky, W. P.: Uber eine classe von funktionen, die der gammafunktion analog sind. Leipzig weidmannsche buchhandlung 46, 268-275 (1894)
[6] Anglesio, J.: Problems and solutions. Amer. math. Monthly 103, 427 (1996)
[7] Anglesio, J.: Problems and solutions. Amer. math. Monthly 103, 903 (1996)
[8] Apostol, T. M.: Some series involving the Riemann zeta function. Proc. amer. Math. soc. 5, 239-243 (1954) · Zbl 0055.06903
[9] Barnes, E. W.: The theory of the G-function. Quart. J. Math. 31, 264-314 (1899) · Zbl 30.0389.02
[10] Barnes, E. W.: Genesis of the double gamma function. Proc. London math. Soc. 31, 358-381 (1900) · Zbl 30.0389.03
[11] Barnes, E. W.: The theory of the double gamma function. Philos. trans. Roy. soc. London ser. A 196, 265-388 (1901) · Zbl 32.0442.02
[12] Barnes, E. W.: On the theory of the multiple gamma functions. Trans. Cambridge philos. Soc. 19, 374-439 (1904) · Zbl 35.0462.01
[13] Bendersky, L.: Sur la fonction gamma généralisée. Acta math. 61, 263-322 (1933) · Zbl 59.0373.02
[14] Campbell, R.: LES intégrals eulériennes et leurs applications. (1966)
[15] Carrier, G. F.; Krook, M.; Pearson, C. E.: Functions of a complex variable. (1983) · Zbl 0548.30001
[16] P. Cassou-Noguès, Analogues p-adiques des fonctions \Gamma -multiples in ”Journées Arithmétiques de Luminy” (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978), pp. 43 -- 55, Ast ’erisque 61 (1979) Soc. Math. France, Paris.
[17] Choi, J.: Determinant of Laplacian on S3. Math. japon. 40, 155-166 (1994) · Zbl 0806.58053
[18] Choi, J.: Explicit formulas for the bernolli polynomials of order n. Indian J. Pure appl. Math. 27, 667-674 (1996) · Zbl 0860.11009
[19] J. Choi, Integral and series representations for the Euler’s constant, in: Proceedings of the Seventh Conference on Real and Complex Analysis, Hiroshima University, Japan, 2003, pp. 43 -- 55.
[20] Choi, J.; Cho, Y. J.; Srivastava, H. M.: Series involving the zeta function and multiple gamma functions. Appl. math. Comput. 159, 509-537 (2004) · Zbl 1061.33001
[21] J. Choi, J. Lee, closed-form evaluation of a class of series associated with the Riemann zeta function, in: Proceedings of the 11th International Conference on Finite or Infinite Dimensional Complex Analysis and Applications, 2003, pp. 36 -- 53.
[22] Choi, J.; Lee, J.; Srivastava, H. M.: A generalization of Wilf’s formula. Kodai math. J. 26, 44-48 (2003) · Zbl 1040.11062
[23] Choi, J.; Nash, C.: Integral representations of the kikelin’s constant A. Math. japon. 45, 223-230 (1997) · Zbl 0871.33001
[24] Choi, J.; Quine, J. R.: E.W. Barnes approach of the multiple gamma functions. J. korean math. Soc. 29, 127-140 (1992) · Zbl 0767.33001
[25] Choi, J.; Seo, T. Y.: The double gamma function. East asian math. J. 13, 159-174 (1997)
[26] Choi, J.; Seo, T. Y.: Integral formulas for Euler’s constant. Comm. korean math. Soc. 13, 683-689 (1998) · Zbl 1022.11067
[27] Choi, J.; Seo, T. Y.: Identities involving series of the Riemann zeta function. Indian J. Pure appl. Math. 30, 649-652 (1999) · Zbl 0934.11041
[28] Choi, J.; Srivastava, H. M.: Sums associated with the zeta function. J. math. Anal. appl. 206, 103-120 (1997) · Zbl 0869.11067
[29] Choi, J.; Srivastava, H. M.: Certain classes of series involving the zeta function. J. math. Anal. appl. 231, 91-117 (1999) · Zbl 0932.11054
[30] Choi, J.; Srivastava, H. M.: An application of the theory of the double gamma function. Kyushu J. Math. 53, 209-222 (1999) · Zbl 1013.11053
[31] Choi, J.; Srivastava, H. M.: Certain classes of series associated with the zeta function and multiple gamma functions. J. comput. Appl. math. 118, 87-109 (2000) · Zbl 0969.11030
[32] Choi, J.; Srivastava, H. M.: A certain class of series associated with the zeta function. Integral transform. Spec. funct. 12, 237-250 (2001) · Zbl 1023.11043
[33] Choi, J.; Srivastava, H. M.: A certain family of series associated with the zeta and related functions. Hiroshima math. J. 32, 417-429 (2002) · Zbl 1160.11339
[34] Choi, J.; Srivastava, H. M.: A family of log-gamma integrals and associated results. J. math. Anal. appl. 303, 436-449 (2005) · Zbl 1064.33003
[35] Choi, J.; Srivastava, H. M.: Certain families of series associated with the Hurwitz -- lerch zeta function. Appl. math. Comput. 170, 399-409 (2005) · Zbl 1082.11052
[36] Choi, J.; Srivastava, H. M.; Adamchik, V. S.: Multiple gamma and related functions. Appl. math. Comput. 134, 515-533 (2003) · Zbl 1026.33003
[37] Choi, J.; Srivastava, H. M.; Quine, J. R.: Some series involving the zeta function. Bull. austral. Math. soc. 51, 383-393 (1995) · Zbl 0830.11030
[38] Choi, J.; Srivastava, H. M.; Zhang, N. -Y.: Integrals involving a function associated with the Euler -- Maclaurin summation formula. Appl. math. Comput. 93, 101-116 (1998) · Zbl 0939.33002
[39] Conway, J. B.: Functions of one complex variable. (1978) · Zbl 0369.76003
[40] D’hoker, E.; Phong, D. H.: On determinant of Laplacians on Riemann surface. Comm. math. Phys. 104, 537-545 (1986)
[41] Dittrich, W.; Reuter, M.: Effective QCD-Lagrangian with $\xi $-function regularization. Phys. lett. B 128, 321-326 (1983)
[42] Dufresnoy, J.; Pisot, Ch.: Sur la relation fonctionnelle $f(x+1) - f(x)$=ϕ(x). Bull. soc. Math. belg. 15, 259-270 (1963) · Zbl 0122.09802
[43] Edwards, J.: A treatise on the integral calculus with applications: examples and problems. 1 and 2 (1954)
[44] Elizalde, E.: Derivative of the generalized Riemann zeta function $\zeta $(z,q) at z= - 1. J. phys. A: math. Gen. 18, 1637-1640 (1985) · Zbl 0603.10039
[45] Elizalde, E.: An asymptotic expansion for the first derivative of the generalized Riemann zeta function. Math. comput. 47, 347-350 (1986) · Zbl 0603.10040
[46] Elizalde, E.; Odintsov, S. D.; Romeo, A.; Bytsenko, A. A.; Zerbini, S.: Zeta regularization techniques with applications. (1994) · Zbl 1050.81500
[47] Elizalde, E.; Romeo, A.: An integral involving the generalized zeta function. Int. J. Math. math. Sci. 13, 453-460 (1990) · Zbl 0708.11039
[48] Euler, L.: Comm. acad. Petropol.. 7, 156 (1734 -- 1735)
[49] Finch, S. R.: Mathematical constants. (2003) · Zbl 1054.00001
[50] Friedman, E.; Ruijsenaars, S.: Shintani-Barnes zeta and gamma functions. Adv. math. 187, 362-395 (2004) · Zbl 1112.11042
[51] Glaisher, J. W. L.: On the history of Euler’s constant. Messenger math. 1, 25-30 (1872)
[52] Glaisher, J. W. L.: On the product $1122\cdot $nn. Messenger math. 7, 43-47 (1877)
[53] Jr., R. W. Gosper: $\int $n/4m/6$\ln \gamma (s)$ds. Fields inst. Comm. 14, 71-76 (1997)
[54] Gradshteyn, I. S.; Ryzhik, I. M.: Tables of integrals, series, and products. (1980) · Zbl 0521.33001
[55] Hardy, G. H.: Divergent series. (1949) · Zbl 0032.05801
[56] Havil, J.: Gamma (Exploring Euler’s constant). (2003) · Zbl 1023.11001
[57] Hölder, O.: Über eine transcendente funktion. (1886)
[58] Kanemitsu, S.; Kumagai, H.; Yoshimoto, M.: Sums involving the Hurwitz zeta function. Ramanujan J. 5, 5-19 (2001) · Zbl 0989.11043
[59] Kinkelin, V. H.: Über eine mit der gamma funktion verwandte transcendente und deren anwendung auf die integralrechnung. J. reine angew. Math. 57, 122-158 (1860) · Zbl 057.1509cj
[60] Knopp, K.: Theory and application of infinite series. (1951) · Zbl 0042.29203
[61] Knuth, D. E.: Euler’s constant to 1271 places. Math. comput. 16, 275-281 (1962) · Zbl 0117.10801
[62] Kumagai, H.: The determinant of the Laplacian on the n-sphere. Acta arith. 91, 199-208 (1999) · Zbl 0946.11021
[63] Lewin, L.: Polylogarithms and associated functions. (1981) · Zbl 0465.33001
[64] Matsumoto, K.: Asymptotic series for double zeta, double gamma, and Hecke L-functions. Math. proc. Cambridge philos. Soc. 123, 385-405 (1998) · Zbl 0903.11021
[65] Osgood, B.; Phillips, R.; Sarnak, P.: Extremals of determinants of Laplacians. J. funct. Anal. 80, 148-211 (1988) · Zbl 0653.53022
[66] Quine, J. R.; Choi, J.: Zeta regularized products and functional determinants on spheres. Rocky mountain J. Math. 26, 719-729 (1996) · Zbl 0864.47024
[67] Ramanujan, S.: A series for Euler’s constant $\gamma $. Messenger math. 46, 73-80 (1916 -- 1917)
[68] Ruijsenaars, S.: First order analytic difference equations and integrable quantum systems. J. math. Phys. 38, 1069-1146 (1997) · Zbl 0877.39002
[69] Ruijsenaars, S.: On Barnes multiple zeta and gamma functions. Adv. math. 156, 107-132 (2000) · Zbl 0966.33013
[70] Sarnak, P.: Determinants of Laplacians. Comm. math. Phys. 110, 113-120 (1987) · Zbl 0618.10023
[71] Shintani, T.: A proof of the classical Kronecker limit formula. Tokyo J. Math. 3, 191-199 (1980) · Zbl 0462.10014
[72] Srivastava, H. M.: A unified presentation of certain classes of series of the Riemann zeta function. Riv. mat. Univ. parma (Ser. 4) 14, 1-23 (1988) · Zbl 0659.10047
[73] Srivastava, H. M.; Choi, J.: Series associated with the zeta and related functions. (2001) · Zbl 1014.33001
[74] Steiner, F.: On Selberg’s zeta function for compact Riemann surfaces. Phys. lett. B 188, 447-454 (1987)
[75] Vardi, I.: Determinants of Laplacians and multiple gamma functions. SIAM J. Math. anal. 19, 493-507 (1988) · Zbl 0641.33003
[76] M.-F. Vignéras, L’équation fonctionnelle de la fonction zêta de Selberg du groupe moudulaire PSL(2,Z), ”Journées Arithmétiques de Luminy” (Collq. Internat. CNRS, hfill Centre Univ. Luminy, 1978), Ast ’erisque 61 (1979) 235 -- 249.
[77] Voros, A.: The Hadamard factorization of the Selberg zeta function on a compact Riemann surface. Phys. lett. B 180, 245-246 (1986)
[78] Voros, A.: Special functions, spectral functions and the Selberg zeta function. Comm. math. Phys. 110, 439-465 (1987) · Zbl 0631.10025
[79] A. Walfisz, Weylsche exponentialsummen in der neueren Zahlentheorie, Leipzig: B.G. Teubner (1963) 114 -- 115. · Zbl 0146.06003
[80] Whittaker, E. T.; Watson, G. N.: A course of modern analysis. (1963) · Zbl 0108.26903
[81] Wilf, H. S.: Problem 10588. Amer. math. Monthly 104, 456 (1997)