Complex dynamic behavior in a viral model with delayed immune response. (English) Zbl 1117.34081

By incorporating time delay into the immune response, the authors proposed the following viral model \[ x'(t)=\lambda -dx(t)-\beta x(t)y(t), \]
\[ y'(t)=\beta x(t)y(t)-ay(t)-py(t)z(t),\quad z^{\prime }(t)=cy(t-\tau )-bz(t), \]
where \(x(t),y(t),z(t)\) are the numbers of susceptible host cells, virus population and cytotoxic T lymphocytes at time \(t,\) respectively, and all the parameters are positive. Then the stability of the equilibria and the permanence of the system are proved. Moreover, some numerical simulations are given to illustrate the complex dynamic behavior of the system, including the periodic solution, chaos and stability switches. The results in this paper imply that the basic reproductive ration of the virus is an important index in understanding the long time behavior of the immune state of patients.


34K60 Qualitative investigation and simulation of models involving functional-differential equations
92D30 Epidemiology
34K20 Stability theory of functional-differential equations
34K25 Asymptotic theory of functional-differential equations
34K23 Complex (chaotic) behavior of solutions to functional-differential equations
Full Text: DOI


[1] Anderson, R. M.; May, R. M., (Infectious Diseases of Humans. Infectious Diseases of Humans, Dynamics and Control (1991), Oxford University: Oxford University Oxford)
[2] Capasso, V., (Mathematical Structures of Epidemic Systems. Mathematical Structures of Epidemic Systems, Lecture Notes in Biomath., vol. 97 (1993), Springer: Springer Heidelberg) · Zbl 0798.92024
[3] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 599-653 (2000) · Zbl 0993.92033
[4] Kamo, M.; Sasaki, A., The effect of cross-immunity and seasonal forcing in a multi-strain epidemic model, Physica D, 165, 228-241 (2002) · Zbl 0993.92030
[5] Wang, W.; Ruan, S., Simulating the SARS outbreak in Beijing with limited data, J. Theoret. Biol., 227, 369-379 (2004) · Zbl 1439.92185
[6] Wang, W.; Zhao, X.-Q., An age-structured epidemic model in a patchy environment, SIAM J. Appl. Math., 65, 1597-1614 (2005) · Zbl 1072.92045
[7] Nowak, M. A.; May, R. M., Virus Dynamics (2000), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 1101.92028
[8] Tuckwell, H. C.; Wan, F. Y.M., On the behavior of solutions in viral dynamical models, Biosystems, 73, 157-161 (2004)
[9] Nowak, M. A.; Bonhoeffer, S.; Hill, A. M.; Boehme, R.; Thomas, H. C., Viral dynamics in hepatitis B virus infection, Proc. Natl. Acad. Sci. USA, 93, 4398-4402 (1996)
[10] Bonhoeffer, S.; May, R. M.; Shaw, G. M.; Nowak, M. A., Virus dynamics and drug therapy, Proc. Natl. Acad. Sci. USA, 94, 6971-6976 (1997)
[11] Bartholdy, C.; Christensen, J. P.; Wodarz, D.; Thomsen, A. R., Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in Gamma interferon-deficient mice infected with lymphocytic choriomeningitis virus, J. Virol., 74, 10304-10311 (2000)
[12] Wodarz, D.; Christensen, J. P.; Thomsen, A. R., The importance of lytic and nonlytic immune responses in viral infections, Trends Immunol., 23, 194-200 (2002)
[13] Bonhoeffer, S.; Coffin, J. M.; Nowak, M. A., Human immunodeficiency virus drug therapy and virus load, J. Virol., 71, 3275-3278 (1997)
[14] Nowak, M. A.; Bangham, C. R.M., Population dynamics of immune responses to persistent viruses, Science, 272, 74-79 (1996)
[15] Bangham, C. R.M., The immune response to HTLV-1, Curr. Opin. Immunol., 12, 397-402 (2000)
[16] Schmitz, J. E.; Kuroda, M. J.; Santra, S.; Sasseville, V. G.; Simon, M. A.; Lifton, M. A.; Racz, P.; Tenner-Racz, K.; Dalesandro, M.; Scallon, B. J.; Ghrayeb, J.; Forman, M. A.; Montefiori, D. C.; Rieber, E. P.; Letvin, N. L.; Reimann, K. A., Control of viremia in simian immunodeficiency virus infection by \(CD 8^+\) lymphocytes, Science, 283, 857-860 (1999)
[17] De Boer, R. J.; Perelson, A. S., Towards a general function describing T cell proliferation, J. Theoret. Biol., 175, 567-576 (1995)
[18] De Boer, R. J.; Perelson, A. S., Target cell limited and immune control models of HIV infection: A comparison, J. Theoret. Biol., 190, 201-214 (1998)
[19] Culshaw, R. V.; Ruan, S.; Spiteri, R. J., Optimal HIV treatment by maximising immune response, J. Math. Biol., 48, 545-562 (2004) · Zbl 1057.92035
[20] Iwasa, Y.; Michor, F.; Nowak, M., Some basic properties of immune selection, J. Theoret. Biol., 229, 179-188 (2004) · Zbl 1440.92027
[21] Liu, W.-M., Nonlinear oscillations in models of immune responses to persistent viruses, Theoret. Popul. Biol., 52, 224-230 (1997) · Zbl 0890.92015
[22] Mayer, H.; Zaenker, K. S.; an der Heiden, U., A basic mathematical model of the immune response, Chaos, 5, 155-161 (1995)
[23] Nowak, M. A.; Bangham, C. R.M., Population dynamics of immune responses to persistent viruses, Science, 272, 74-79 (1996)
[24] Wodarz, D., Hepatitis C virus dynamics and pathology: The role of CTL and antibody responses, J. Gen. Virol., 84, 1743-1750 (2003)
[25] Burić, N.; Mudrinic, M.; Vasović, N., Time delay in a basic model of the immune response, Chaos Solitons Fractals, 12, 483-489 (2001) · Zbl 1026.92015
[26] Canabarro, A. A.; Gléria, I. M.; Lyra, M. L., Periodic solutions and chaos in a non-linear model for the delayed cellular immune response, Physica A, 342, 234-241 (2004)
[28] Wang, K.; Wang, W.; Liu, X., Viral infection model with periodic lytic immune response, Chaos Solitons Fractals, 28, 90-99 (2006) · Zbl 1079.92048
[29] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics (1993), Academic Press: Academic Press San Diego · Zbl 0777.34002
[30] Cooke, K. L.; van den Driessche, P., On zeros of some transcendental equations, Funkcial. Ekvac., 29, 77-90 (1986) · Zbl 0603.34069
[31] Peng, M.; Ucar, A., The use of the Euler method in identification of multiple bifurcations and chaotic behavior in numerical approximation of delay-differential equations, Chaos Solitons Fractals, 21, 883-891 (2004) · Zbl 1054.65126
[32] Chun, Y. K.; Kim, J. Y.; Woo, H. J.; Oh, S. M.; Kang, I.; Ha, J.; Kim, S. S., No significant correlation exists between core promoter mutations, viral replication, and liver damage in chronic hepatitis B infection, Hepatology, 32, 1154-1162 (2000)
[33] Deng, G.-H.; Wang, Z.-L.; Wang, Y.-M.; Wang, K.-F.; Fan, Y., Dynamic determination and analysis of serum virus load in patients with chronic HBV infection, World Chin. J. Digestol., 12, 862-865 (2004)
[34] Pontisso, P.; Bellati, G.; Brunetto, M.; Chemello, L.; Colloredo, G.; Di-Stefano, R.; Nicoletti, M.; Rumi, M. G.; Ruvoletto, M. G.; Soffredini, R.; Valenza, L. M.; Colucci, G., Hepatitis C virus RNA profiles in chronically infected individuals: Do they relate to disease activity?, Hepatology, 29, 585-589 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.