zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complex dynamic behavior in a viral model with delayed immune response. (English) Zbl 1117.34081
By incorporating time delay into the immune response, the authors proposed the following viral model $$x'(t)=\lambda -dx(t)-\beta x(t)y(t),$$ $$ y'(t)=\beta x(t)y(t)-ay(t)-py(t)z(t),\quad z^{\prime }(t)=cy(t-\tau )-bz(t),$$ where $x(t),y(t),z(t)$ are the numbers of susceptible host cells, virus population and cytotoxic T lymphocytes at time $t,$ respectively, and all the parameters are positive. Then the stability of the equilibria and the permanence of the system are proved. Moreover, some numerical simulations are given to illustrate the complex dynamic behavior of the system, including the periodic solution, chaos and stability switches. The results in this paper imply that the basic reproductive ration of the virus is an important index in understanding the long time behavior of the immune state of patients.

34K60Qualitative investigation and simulation of models
34K20Stability theory of functional-differential equations
34K25Asymptotic theory of functional-differential equations
34K23Complex (chaotic) behavior of solutions of functional-differential equations
Full Text: DOI
[1] Anderson, R. M.; May, R. M.: Infectious diseases of humans. Dynamics and control (1991)
[2] Capasso, V.: Mathematical structures of epidemic systems. Lecture notes in biomath. 97 (1993) · Zbl 0798.92024
[3] Hethcote, H. W.: The mathematics of infectious diseases. SIAM rev. 42, 599-653 (2000) · Zbl 0993.92033
[4] Kamo, M.; Sasaki, A.: The effect of cross-immunity and seasonal forcing in a multi-strain epidemic model. Physica D 165, 228-241 (2002) · Zbl 0993.92030
[5] Wang, W.; Ruan, S.: Simulating the SARS outbreak in Beijing with limited data. J. theoret. Biol. 227, 369-379 (2004)
[6] Wang, W.; Zhao, X. -Q.: An age-structured epidemic model in a patchy environment. SIAM J. Appl. math. 65, 1597-1614 (2005) · Zbl 1072.92045
[7] Nowak, M. A.; May, R. M.: Virus dynamics. (2000) · Zbl 1101.92028
[8] Tuckwell, H. C.; Wan, F. Y. M.: On the behavior of solutions in viral dynamical models. Biosystems 73, 157-161 (2004)
[9] Nowak, M. A.; Bonhoeffer, S.; Hill, A. M.; Boehme, R.; Thomas, H. C.: Viral dynamics in hepatitis B virus infection. Proc. natl. Acad. sci. USA 93, 4398-4402 (1996)
[10] Bonhoeffer, S.; May, R. M.; Shaw, G. M.; Nowak, M. A.: Virus dynamics and drug therapy. Proc. natl. Acad. sci. USA 94, 6971-6976 (1997)
[11] Bartholdy, C.; Christensen, J. P.; Wodarz, D.; Thomsen, A. R.: Persistent virus infection despite chronic cytotoxic T-lymphocyte activation in gamma interferon-deficient mice infected with lymphocytic choriomeningitis virus. J. virol. 74, 10304-10311 (2000)
[12] Wodarz, D.; Christensen, J. P.; Thomsen, A. R.: The importance of lytic and nonlytic immune responses in viral infections. Trends immunol. 23, 194-200 (2002)
[13] Bonhoeffer, S.; Coffin, J. M.; Nowak, M. A.: Human immunodeficiency virus drug therapy and virus load. J. virol. 71, 3275-3278 (1997)
[14] Nowak, M. A.; Bangham, C. R. M.: Population dynamics of immune responses to persistent viruses. Science 272, 74-79 (1996)
[15] Bangham, C. R. M.: The immune response to HTLV-1. Curr. opin. Immunol. 12, 397-402 (2000)
[16] Schmitz, J. E.; Kuroda, M. J.; Santra, S.; Sasseville, V. G.; Simon, M. A.; Lifton, M. A.; Racz, P.; Tenner-Racz, K.; Dalesandro, M.; Scallon, B. J.; Ghrayeb, J.; Forman, M. A.; Montefiori, D. C.; Rieber, E. P.; Letvin, N. L.; Reimann, K. A.: Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science 283, 857-860 (1999)
[17] De Boer, R. J.; Perelson, A. S.: Towards a general function describing T cell proliferation. J. theoret. Biol. 175, 567-576 (1995)
[18] De Boer, R. J.; Perelson, A. S.: Target cell limited and immune control models of HIV infection: A comparison. J. theoret. Biol. 190, 201-214 (1998)
[19] Culshaw, R. V.; Ruan, S.; Spiteri, R. J.: Optimal HIV treatment by maximising immune response. J. math. Biol. 48, 545-562 (2004) · Zbl 1057.92035
[20] Iwasa, Y.; Michor, F.; Nowak, M.: Some basic properties of immune selection. J. theoret. Biol. 229, 179-188 (2004)
[21] Liu, W. -M.: Nonlinear oscillations in models of immune responses to persistent viruses. Theoret. popul. Biol. 52, 224-230 (1997) · Zbl 0890.92015
[22] Mayer, H.; Zaenker, K. S.; Der Heiden, U. An: A basic mathematical model of the immune response. Chaos 5, 155-161 (1995)
[23] Nowak, M. A.; Bangham, C. R. M.: Population dynamics of immune responses to persistent viruses. Science 272, 74-79 (1996)
[24] Wodarz, D.: Hepatitis C virus dynamics and pathology: the role of CTL and antibody responses. J. gen. Virol. 84, 1743-1750 (2003)
[25] Burić, N.; Mudrinic, M.; Vasović, N.: Time delay in a basic model of the immune response. Chaos solitons fractals 12, 483-489 (2001) · Zbl 1026.92015
[26] Canabarro, A. A.; Gléria, I. M.; Lyra, M. L.: Periodic solutions and chaos in a non-linear model for the delayed cellular immune response. Physica A 342, 234-241 (2004)
[27] T. Kajiwara, T. Iuchi, Stability of delay differential equation models of infectious diseases in vivo, personal communication
[28] Wang, K.; Wang, W.; Liu, X.: Viral infection model with periodic lytic immune response. Chaos solitons fractals 28, 90-99 (2006) · Zbl 1079.92048
[29] Kuang, Y.: Delay differential equations with applications in population dynamics. (1993) · Zbl 0777.34002
[30] Cooke, K. L.; Den Driessche, P. Van: On zeros of some transcendental equations. Funkcial. ekvac. 29, 77-90 (1986) · Zbl 0603.34069
[31] Peng, M.; Ucar, A.: The use of the Euler method in identification of multiple bifurcations and chaotic behavior in numerical approximation of delay-differential equations. Chaos solitons fractals 21, 883-891 (2004) · Zbl 1054.65126
[32] Chun, Y. K.; Kim, J. Y.; Woo, H. J.; Oh, S. M.; Kang, I.; Ha, J.; Kim, S. S.: No significant correlation exists between core promoter mutations, viral replication, and liver damage in chronic hepatitis B infection. Hepatology 32, 1154-1162 (2000)
[33] Deng, G. -H.; Wang, Z. -L.; Wang, Y. -M.; Wang, K. -F.; Fan, Y.: Dynamic determination and analysis of serum virus load in patients with chronic HBV infection. World chin. J. digestol. 12, 862-865 (2004)
[34] Pontisso, P.; Bellati, G.; Brunetto, M.; Chemello, L.; Colloredo, G.; Di-Stefano, R.; Nicoletti, M.; Rumi, M. G.; Ruvoletto, M. G.; Soffredini, R.; Valenza, L. M.; Colucci, G.: Hepatitis C virus RNA profiles in chronically infected individuals: do they relate to disease activity?. Hepatology 29, 585-589 (1999)