Free extreme values. (English) Zbl 1117.46044

Summary: Free probability analogs of the basics of extreme-value theory are obtained, based on Ando’s spectral order. This includes classification of freely max-stable laws and their domains of attraction, using free extremal convolutions on the distributions. These laws coincide with the limit laws in the classical peaks-over-threshold approach. A free extremal projection-valued process over a measure-space is constructed, which is related to the free Poisson point process.


46L54 Free probability and free operator algebras
60G70 Extreme value theory; extremal stochastic processes
46L53 Noncommutative probability and statistics
Full Text: DOI arXiv


[1] Ando, T. (1989). Majorization, doubly stochastic matrices and comparison of eigenvalues. Linear Algebra Appl. 18 163–248. · Zbl 0673.15011 · doi:10.1016/0024-3795(89)90580-6
[2] Balkema, A. A. and De Haan, L. (1974). Residual lifetime at great age. Ann. Probab. 2 792–804. · Zbl 0295.60014 · doi:10.1214/aop/1176996548
[3] Bercovici, H. and Pata, V. (with an appendix by P. Biane) (1999). Stable laws and domain of attraction in free probability theory. Ann. of Math. (2) 149 1023–1060. · Zbl 0945.46046 · doi:10.2307/121080
[4] Bercovici, H. and Voiculescu, D. (1992). Levy–Hinčin type theorems for multiplicative and additive free convolution. Pacific J. Math. 153 217–248. · Zbl 0769.60013 · doi:10.2140/pjm.1992.153.217
[5] Bercovici, H. and Voiculescu, D. (1993). Free convolution of measures with unbounded support. Indiana Univ. Math. J. 42 733–773. · Zbl 0806.46070 · doi:10.1512/iumj.1993.42.42033
[6] Davison, A. C. and Smith, R. L. (1990). Models for exceedances over high thresholds (with discussion). J. Roy. Statist. Soc. Ser. B 52 393–442. JSTOR: · Zbl 0706.62039
[7] Embrechts, P., Klüppelberg, C. and Mikosch, T. (1997). Modelling Extremal Events for Insurance and Finance . Springer, Berlin. · Zbl 0873.62116
[8] Gunawardena, J., ed. (1998). Idempotency . Cambridge Univ. Press. · Zbl 0898.16032
[9] Kadison, R. V. and Ringrose, J. (1986). Fundamentals of the Theory of Operator Algebras . Academic Press, Orlando, FL. · Zbl 0601.46054
[10] Maslov, V. P. and Samborskii, S. N., eds. (1992). Idempotent Analysis . Amer. Math. Soc., Providence, RI. · Zbl 0772.00015
[11] Nica, A. and Speicher, R. (with an appendix by D. Voiculescu) (1996). On the multiplication of free \(N\)-tuples of noncommutative random variables. Amer. J. Math. 118 799–837. · Zbl 0856.46035 · doi:10.1353/ajm.1996.0034
[12] Pickands, J. (1975). Statistical inference using extreme value order statistics. Ann. Statist. 3 119–131. · Zbl 0312.62038 · doi:10.1214/aos/1176343003
[13] Reiss, R. D. and Thomas, M. (1997). Statistical Analysis of Extremal Values . Birkhäuser, Berlin. · Zbl 0880.62002
[14] Resnick, S. I. (1987). Extreme Values , Regular Variation and Point Processes . Springer, New York. · Zbl 0633.60001
[15] Smith, R. L. (1987). Estimating tails of probability distributions. Ann. Statist. 15 1174–1207. · Zbl 0642.62022 · doi:10.1214/aos/1176350499
[16] Stratila, S. and Zsido, L. (1979). Lectures on von Neumann Algebras . Editura Academiei and Abacus Press. · Zbl 0391.46048
[17] Voiculescu, D. (1998). Lectures on Free Probability Theory . Lectures on Probability Theory and Statistics . Saint Flour XXVIII . Lecture Notes in Math. 1783 279–349. Springer, Berlin. · Zbl 1015.46037
[18] Voiculescu, D., Dykema, K. and Nica, A. (1992). Free Random Variables . CRM Monograph Series 1 . Amer. Math. Soc., Providence, RI. · Zbl 0795.46049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.