# zbMATH — the first resource for mathematics

On a general class of multi-valued weakly Picard mappings. (English) Zbl 1117.47039
Let $$(X,d)$$ be a metric space and $$T:X\rightarrow\mathcal{P}(X)$$ be a multi-valued operator. $$T$$ is said to be a generalized $$(\alpha ,L)$$-weak contraction if there exist a constant $$L\geq 0$$ and a function $$\alpha:[0,\infty)\rightarrow[0,1)$$, with $$\lim \sup_{r\rightarrow t^+} \alpha (r)<1$$ for every $$t\in [ 0,\infty )$$, such that $H(Tx, Ty)\leq \alpha (d(x,y)) d(x,y)+LD(y,Tx)$ for all $$x,y\in X$$. When $$\alpha (t)=\theta\in[0,1)$$ for all $$t\in[0,\infty)$$, we say that $$T$$ is a $$(\theta ,L)$$-weak contraction. The authors prove that a generalized $$(\alpha ,L)$$-weak contraction $$T$$ has a fixed point whenever $$X$$ is complete and $$T$$ has nonempty bounded and closed values. Moreover, if $$T$$ is a $$(\theta,L)$$-weak contraction, then for any $$x_0\in X$$ there exists an orbit $$\{x_n\}_{n\geq 0}$$ converging to a fixed point $$u$$ of $$T$$ for which the following estimate holds: $d(x_n,u)\leq\min\left\{\frac{h^n}{1-h}d(x_1,x_0),\frac{h}{1-h}d(x_{n-1},x_n)\right\}$ for a certain constant $$h<1$$.

##### MSC:
 47H04 Set-valued operators 47H10 Fixed-point theorems 54C60 Set-valued maps in general topology
Full Text:
##### References:
  Assad, N.A., Fixed point theorems for set valued transformations on compact set, Boll. un. mat. ital., 4, 1-7, (1973) · Zbl 0265.54046  Assad, N.A.; Kirk, W.A., Fixed point theorems for set-valued mappings of contractive type, Pacific J. math., 43, 553-562, (1972) · Zbl 0239.54032  Berinde, V., Generalized contractions and applications, vol. 22, (1997), Editura Cub Press Baia Mare, (in Romanian)  Berinde, V., Iterative approximation of fixed points, (2002), Editura Efemeride Baia Mare · Zbl 1036.47037  Berinde, V., On the approximation of fixed points of weak ϕ-contractive operators, Fixed point theory, 4, 2, 131-142, (2003) · Zbl 1065.47069  Berinde, V., On the approximation of fixed points of weak contractive mappings, Carpathian J. math., 19, 1, 7-22, (2003) · Zbl 1114.47045  Berinde, V., Approximating fixed points of weak contractions using Picard iteration, Nonlinear analysis forum, 9, 1, 43-53, (2004) · Zbl 1078.47042  Chatterjea, S.K., Fixed-point theorems, C. R. acad. bulgare sci., 25, 727-730, (1972) · Zbl 0274.54033  Chen, Y.-Q., On a fixed point problem of Reich, Proc. amer. math. soc., 124, 10, 3085-3088, (1996) · Zbl 0874.47027  Ciric, L.B., Fixed point theory. contraction mapping principle, (2003), FME Press Beograd  Ciric, L.B.; Ume, J.S., Common fixed point theorems for multi-valued non-self mappings, Publ. math. debrecen, 60, 3-4, 359-371, (2002) · Zbl 1017.54011  Ciric, L.B.; Ume, J.S., On the convergence of the Ishikawa iterates to a common fixed point of multi-valued mappings, Demonstratio math., 36, 4, 951-956, (2003) · Zbl 1073.47061  Daffer, P.Z.; Kaneko, H., Fixed points of generalized contractive multi-valued mappings, J. math. anal. appl., 192, 655-666, (1995) · Zbl 0835.54028  Dugundji, J.; Granas, A., Weakly contractive maps and elementary domain invariance theorem, Bull. Greek math. soc., 19, 141-151, (1978) · Zbl 0417.54010  Granas, A.; Dugundji, J., Fixed point theory, (2003), Springer New York · Zbl 1025.47002  Itoh, S., Multi-valued generalized contractions and fixed point theorems, Comment. math. univ. carolin., 18, 247-258, (1977) · Zbl 0359.54038  Kannan, R., Some results on fixed points, Bull. Calcutta math. soc., 10, 71-76, (1968) · Zbl 0209.27104  Kaneko, H., A general principle for fixed points of contractive multi-valued mappings, Math. japon., 31, 407-411, (1986) · Zbl 0602.54048  Kaneko, H., Generalized contractive multi-valued mappings and their fixed points, Math. japon., 33, 57-64, (1988) · Zbl 0647.54038  Kubiaczyk, I.; Ali, N.M., On the convergence of the Ishikawa iterates to a common fixed point for a pair of multi-valued mappings, Acta math. hungar., 75, 3, 253-257, (1997) · Zbl 0892.47057  Lim, T.-C., On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. math. anal. appl., 110, 2, 436-441, (1985) · Zbl 0593.47056  Markin, J.T., A fixed point theorem for set-valued mappings, Bull. amer. math. soc., 74, 639-640, (1968) · Zbl 0159.19903  Mizoguchi, N.; Takahashi, W., Fixed point theorems for multi-valued mappings on complete metric spaces, J. math. anal. appl., 141, 177-188, (1989) · Zbl 0688.54028  Nadler, S.B., Multi-valued contraction mappings, Pacific J. math., 30, 282-291, (1969)  Petruşel, A., On frigon – granas-type multifunctions, Nonlinear anal. forum, 7, 113-121, (2002) · Zbl 1043.47036  Reich, S., Kannan’s fixed point theorem, Boll. un. mat. ital., 4, 1-11, (1971) · Zbl 0219.54042  Reich, S., A fixed point theorem for locally contractive multi-valued functions, Rev. roumaine math. pures appl., 17, 569-572, (1972) · Zbl 0239.54033  Reich, S., Fixed points of contractive functions, Boll. un. mat. ital., 5, 26-42, (1972) · Zbl 0249.54026  Reich, S., Some problems and results in fixed point theory, (), 179-187 · Zbl 0531.47048  Rhoades, B.E., A fixed point theorem for a multi-valued non-self mapping, Comment. math. univ. carolin., 37, 401-404, (1996) · Zbl 0849.47032  Rhoades, B.E.; Watson, B., Fixed points for set-valued mappings on metric spaces, Math. japon., 35, 4, 735-743, (1990) · Zbl 0728.54013  Rus, I.A., Fixed point theorems for multi-valued mappings in complete metric spaces, Math. japon., 20, 21-24, (1975)  Rus, I.A., Principles and applications of the fixed point theory, (1979), Editura Dacia Cluj-Napoca, (in Romanian)  Rus, I.A., Basic problems of the metric fixed point theory revisited (II), Stud. univ. babeş-bolyai, 36, 81-99, (1991) · Zbl 0878.47044  Rus, I.A., Generalized contractions and applications, (2001), Cluj University Press Cluj-Napoca · Zbl 0968.54029  Rus, I.A.; Petruşel, A.; Sîntămărian, A., Data dependence of the fixed point set of some multi-valued weakly Picard operators, Nonlinear anal., 52, 1947-1959, (2003) · Zbl 1055.47047  Singh, S.L.; Bhatnagar, C.; Hashim, A.M., Round-off stability of Picard iterative procedure for multi-valued operators, Nonlinear anal. forum, 10, 13-19, (2005) · Zbl 1095.47508  Sîntămărian, A., Some pairs of multi-valued operators, Carpathian J. math., 21, 1-2, 115-125, (2005)  Zamfirescu, T., Fix point theorems in metric spaces, Arch. math. (basel), 23, 292-298, (1972) · Zbl 0239.54030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.