×

zbMATH — the first resource for mathematics

On a general class of multi-valued weakly Picard mappings. (English) Zbl 1117.47039
Let \((X,d)\) be a metric space and \(T:X\rightarrow\mathcal{P}(X)\) be a multi-valued operator. \(T\) is said to be a generalized \((\alpha ,L)\)-weak contraction if there exist a constant \(L\geq 0\) and a function \(\alpha:[0,\infty)\rightarrow[0,1)\), with \(\lim \sup_{r\rightarrow t^+} \alpha (r)<1\) for every \(t\in [ 0,\infty )\), such that \[ H(Tx, Ty)\leq \alpha (d(x,y)) d(x,y)+LD(y,Tx) \] for all \(x,y\in X\). When \(\alpha (t)=\theta\in[0,1)\) for all \(t\in[0,\infty)\), we say that \(T\) is a \((\theta ,L)\)-weak contraction. The authors prove that a generalized \((\alpha ,L)\)-weak contraction \(T\) has a fixed point whenever \(X\) is complete and \(T\) has nonempty bounded and closed values. Moreover, if \(T\) is a \((\theta,L)\)-weak contraction, then for any \(x_0\in X\) there exists an orbit \(\{x_n\}_{n\geq 0}\) converging to a fixed point \(u\) of \(T\) for which the following estimate holds: \[ d(x_n,u)\leq\min\left\{\frac{h^n}{1-h}d(x_1,x_0),\frac{h}{1-h}d(x_{n-1},x_n)\right\} \] for a certain constant \(h<1\).

MSC:
47H04 Set-valued operators
47H10 Fixed-point theorems
54C60 Set-valued maps in general topology
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Assad, N.A., Fixed point theorems for set valued transformations on compact set, Boll. un. mat. ital., 4, 1-7, (1973) · Zbl 0265.54046
[2] Assad, N.A.; Kirk, W.A., Fixed point theorems for set-valued mappings of contractive type, Pacific J. math., 43, 553-562, (1972) · Zbl 0239.54032
[3] Berinde, V., Generalized contractions and applications, vol. 22, (1997), Editura Cub Press Baia Mare, (in Romanian)
[4] Berinde, V., Iterative approximation of fixed points, (2002), Editura Efemeride Baia Mare · Zbl 1036.47037
[5] Berinde, V., On the approximation of fixed points of weak ϕ-contractive operators, Fixed point theory, 4, 2, 131-142, (2003) · Zbl 1065.47069
[6] Berinde, V., On the approximation of fixed points of weak contractive mappings, Carpathian J. math., 19, 1, 7-22, (2003) · Zbl 1114.47045
[7] Berinde, V., Approximating fixed points of weak contractions using Picard iteration, Nonlinear analysis forum, 9, 1, 43-53, (2004) · Zbl 1078.47042
[8] Chatterjea, S.K., Fixed-point theorems, C. R. acad. bulgare sci., 25, 727-730, (1972) · Zbl 0274.54033
[9] Chen, Y.-Q., On a fixed point problem of Reich, Proc. amer. math. soc., 124, 10, 3085-3088, (1996) · Zbl 0874.47027
[10] Ciric, L.B., Fixed point theory. contraction mapping principle, (2003), FME Press Beograd
[11] Ciric, L.B.; Ume, J.S., Common fixed point theorems for multi-valued non-self mappings, Publ. math. debrecen, 60, 3-4, 359-371, (2002) · Zbl 1017.54011
[12] Ciric, L.B.; Ume, J.S., On the convergence of the Ishikawa iterates to a common fixed point of multi-valued mappings, Demonstratio math., 36, 4, 951-956, (2003) · Zbl 1073.47061
[13] Daffer, P.Z.; Kaneko, H., Fixed points of generalized contractive multi-valued mappings, J. math. anal. appl., 192, 655-666, (1995) · Zbl 0835.54028
[14] Dugundji, J.; Granas, A., Weakly contractive maps and elementary domain invariance theorem, Bull. Greek math. soc., 19, 141-151, (1978) · Zbl 0417.54010
[15] Granas, A.; Dugundji, J., Fixed point theory, (2003), Springer New York · Zbl 1025.47002
[16] Itoh, S., Multi-valued generalized contractions and fixed point theorems, Comment. math. univ. carolin., 18, 247-258, (1977) · Zbl 0359.54038
[17] Kannan, R., Some results on fixed points, Bull. Calcutta math. soc., 10, 71-76, (1968) · Zbl 0209.27104
[18] Kaneko, H., A general principle for fixed points of contractive multi-valued mappings, Math. japon., 31, 407-411, (1986) · Zbl 0602.54048
[19] Kaneko, H., Generalized contractive multi-valued mappings and their fixed points, Math. japon., 33, 57-64, (1988) · Zbl 0647.54038
[20] Kubiaczyk, I.; Ali, N.M., On the convergence of the Ishikawa iterates to a common fixed point for a pair of multi-valued mappings, Acta math. hungar., 75, 3, 253-257, (1997) · Zbl 0892.47057
[21] Lim, T.-C., On fixed point stability for set-valued contractive mappings with applications to generalized differential equations, J. math. anal. appl., 110, 2, 436-441, (1985) · Zbl 0593.47056
[22] Markin, J.T., A fixed point theorem for set-valued mappings, Bull. amer. math. soc., 74, 639-640, (1968) · Zbl 0159.19903
[23] Mizoguchi, N.; Takahashi, W., Fixed point theorems for multi-valued mappings on complete metric spaces, J. math. anal. appl., 141, 177-188, (1989) · Zbl 0688.54028
[24] Nadler, S.B., Multi-valued contraction mappings, Pacific J. math., 30, 282-291, (1969)
[25] Petruşel, A., On frigon – granas-type multifunctions, Nonlinear anal. forum, 7, 113-121, (2002) · Zbl 1043.47036
[26] Reich, S., Kannan’s fixed point theorem, Boll. un. mat. ital., 4, 1-11, (1971) · Zbl 0219.54042
[27] Reich, S., A fixed point theorem for locally contractive multi-valued functions, Rev. roumaine math. pures appl., 17, 569-572, (1972) · Zbl 0239.54033
[28] Reich, S., Fixed points of contractive functions, Boll. un. mat. ital., 5, 26-42, (1972) · Zbl 0249.54026
[29] Reich, S., Some problems and results in fixed point theory, (), 179-187 · Zbl 0531.47048
[30] Rhoades, B.E., A fixed point theorem for a multi-valued non-self mapping, Comment. math. univ. carolin., 37, 401-404, (1996) · Zbl 0849.47032
[31] Rhoades, B.E.; Watson, B., Fixed points for set-valued mappings on metric spaces, Math. japon., 35, 4, 735-743, (1990) · Zbl 0728.54013
[32] Rus, I.A., Fixed point theorems for multi-valued mappings in complete metric spaces, Math. japon., 20, 21-24, (1975)
[33] Rus, I.A., Principles and applications of the fixed point theory, (1979), Editura Dacia Cluj-Napoca, (in Romanian)
[34] Rus, I.A., Basic problems of the metric fixed point theory revisited (II), Stud. univ. babeş-bolyai, 36, 81-99, (1991) · Zbl 0878.47044
[35] Rus, I.A., Generalized contractions and applications, (2001), Cluj University Press Cluj-Napoca · Zbl 0968.54029
[36] Rus, I.A.; Petruşel, A.; Sînt&abreve;m&abreve;rian, A., Data dependence of the fixed point set of some multi-valued weakly Picard operators, Nonlinear anal., 52, 1947-1959, (2003) · Zbl 1055.47047
[37] Singh, S.L.; Bhatnagar, C.; Hashim, A.M., Round-off stability of Picard iterative procedure for multi-valued operators, Nonlinear anal. forum, 10, 13-19, (2005) · Zbl 1095.47508
[38] Sînt&abreve;m&abreve;rian, A., Some pairs of multi-valued operators, Carpathian J. math., 21, 1-2, 115-125, (2005)
[39] Zamfirescu, T., Fix point theorems in metric spaces, Arch. math. (basel), 23, 292-298, (1972) · Zbl 0239.54030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.