Limit of normalized quadrangulations: the Brownian map. (English) Zbl 1117.60038

The authors built the so-called Brownian map or “continuum random map”, as \(n\to\infty\) of suitably scaled (with scaling \(n^{1/4}\)) random quadrangulations chosen equally likely among the pointed quadrangulations with \(n\) faces. A metric space of pointed abstract maps containing the discrete pointed quadrangulations is constructed and the convergence is weak in this space, the limit being continuous and compact. This limit is described with the help of the Brownian snake with lifetime process the normalized Brownian excursion. First, the authors study a model of rooted quadrangulations which converges to the Brownian map. A model of rooted quadrangulations with random edge lengths is also shown to converge to the Brownian map. By using the canonical surjection from the set of rooted quadrangulations with \(n\) faces onto the set of pointed quadrangulations with \(n\) faces one obtains the first announced result. The convergence of the radius and of the profile of rooted and pointed quadrangulations are also studied.


60F99 Limit theorems in probability theory
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60C05 Combinatorial probability
60F05 Central limit and other weak theorems
Full Text: DOI arXiv


[1] Aldous, D. (1991). The continuum random tree. II. An overview. In Stochastic Analysis (M. T. Barlow and N. H. Bingham, eds.) 23–70. Cambridge Univ. Press. · Zbl 0791.60008
[2] Aldous, D. (1993). The continuum random tree. III. Ann. Probab. 21 248–289. · Zbl 0791.60009
[3] Aldous, D. and Pitman, P. (1999). A family of random trees with random edge lengths. Random Structures Algorithms 15 176–195. · Zbl 0934.05117
[4] Aldous, D. and Pitman, J. (2000). Inhomogeneous continuum random trees and the entrance boundary of the additive coalescent. Probab. Theory Related Fields 118 455–482. · Zbl 0969.60015
[5] Aldous, D., Miermont, G. and Pitman, J. (2004). The exploration process of inhomogeneous continuum random trees, and an extension of Jeulin’s local time identity. Probab. Theory Related Fields 129 182–218. · Zbl 1056.60011
[6] Ambjørn, J., Durhuus, B. and Jonsson, T. (1997). Quantum Geometry. A Statistical Field Theory Approach . Cambridge Univ. Press. · Zbl 0993.82500
[7] Ambjørn, J. and Watabiki, Y. (1995). Scaling in quantum gravity. Nuclear Phys. B 445 129–142. · Zbl 1006.83015
[8] Angel, O. and Schramm, O. (2003). Uniform infinite planar triangulations. Comm. Math. Phys. 241 191–213. · Zbl 1098.60010
[9] Bouttier, J., Di Francesco, P. and Guitter, E. (2003). Statistics of planar graphs viewed from a vertex: A study via labeled trees. Nuclear Phys. B 675 631–660. · Zbl 1027.05021
[10] Bender, E. A., Compton, K. J. and Richmond, L. B. (1999). 0–1 laws for maps. Random Structures Algorithms 14 215–237. · Zbl 0940.60038
[11] Bender, E. A., Richmond, L. B. and Wormald, N. C. (1995). Largest 4-connected components of 3-connected planar triangulations. Random Structure Algorithms 7 273–285. · Zbl 0839.05090
[12] Brézin, E., Itzykson, C., Parisi, G. and Zuber, J. B. (1978). Planar diagrams. Comm. Math. Phys. 59 35–51. · Zbl 0997.81548
[13] Camarri, M. and Pitman, J. (2000). Limit distributions and random trees derived from the birthday problem with unequal probabilities. Electron. J. Probab. 5 1–18. · Zbl 0953.60030
[14] Chassaing, P. and Durhuus, B. (2006). Local limit of labeled trees and expected volume growth in a random quadrangulation. Ann. Probab. 34 879–917. · Zbl 1102.60007
[15] Chassaing, P. and Schaeffer, G. (2004). Random planar lattices and integrated superBrownian excursion. Probab. Theory Related Fields 128 161–212. · Zbl 1041.60008
[16] Cori, R. and Vauquelin, B. (1981). Planar maps are well-labeled trees. Canad. J. Math. 33 1023–1042. · Zbl 0415.05020
[17] David, F. (1995). Simplicial quantum gravity and random lattices. In Gravitation and Quantizations ( Les Houches , 1992 ) 679–749. North-Holland, Amsterdam. · Zbl 0856.53069
[18] Duquesne, T. and Le Gall, J. F. (2002). Random Trees, Lévy Processes and Spatial Branching Processes. Astérisque 281 . Soc. Math. de France, Paris. · Zbl 1037.60074
[19] Evans, S. N., Pitman, J. and Winter, A. (2006). Rayleigh processes, real trees, and root growth with re-grafting. Probab. Theory Related Fields 134 81–126. · Zbl 1086.60050
[20] Gao, Z. and Richmond, L. B. (1994). Root vertex valency distributions of rooted maps and rooted triangulations. European J. Combin. 15 483–490. · Zbl 0807.05026
[21] Gittenberger, B. (2003). A note on “State spaces of the snake and its tour—Convergence of the discrete snake” by J.-F. Marckert and A. Mokkadem. J. Theoret. Probab. 16 1063–1067. · Zbl 1050.60080
[22] Janson, S. and Marckert, J.-F. (2003). Convergence of discrete snake. J. Theoret. Probab. 18 615–647. · Zbl 1084.60049
[23] Kallenberg, O. (2002). Foundations of Modern Probability , 2nd ed. Springer, New York. · Zbl 0996.60001
[24] Krikun, M. (2003). Uniform infinite planar triangulation and related time-reversed critical branching process. J. Math. Sci. 131 5520–5537.
[25] Le Gall, J.-F. and Le Jan, Y. (1998). Branching processes in Lévy processes: The exploration process. Ann. Probab. 26 213–252. · Zbl 0948.60071
[26] Le Gall, J.-F. (1999). Spatial Branching Processes, Random Snakes and Partial Differential Equations . Birkhäuser, Basel. · Zbl 0938.60003
[27] Le Gall, J.-F. and Weill, M. (2006). Conditioned Brownian trees. Ann. Inst. H. Poincaré Probab. Statist. 42 455–489. · Zbl 1107.60053
[28] Marckert, J.-F. and Mokkadem, A. (2003). The depth first processes of Galton–Watson trees converge to the same Brownian excursion. Ann. Probab. 31 1655–1678. · Zbl 1049.05026
[29] Marckert, J.-F. and Mokkadem, A. (2003). States spaces of the snake and of its tour—Convergence of the discrete snake. J. Theoret. Probab. 16 1015–1046. · Zbl 1044.60083
[30] Petrov, V. V. (1995). Limit Theorems of Probability Theory. Sequences of Independent Random Variables. Oxford Univ. Press. · Zbl 0826.60001
[31] Pitman, J. (2006). Combinatorial Stochastic Processes . Springer, Berlin. MR2245368 · Zbl 1103.60004
[32] Richmond, L. B. and Wormald, N. C. (1995). Almost all maps are asymmetric. J. Combin. Theory Ser. B 63 1–7. · Zbl 0820.05017
[33] Schaeffer, G. (1998). Conjugaison d’arbres et cartes combinatoires aléatoires. Ph.D. thesis, Univ. Bordeaux I. Available at http://www.lix.polytechnique.fr/ schaeffe/Biblio/PHD-Schaeffer.ps Tutte, W. T. (1963). A census of planar maps. Canad. J. Math. 15 249–271.
[34] Tutte, W. T. (1980). On the enumeration of convex polyhedra. J. Combin. Theory Ser. B 28 105–126. · Zbl 0355.52004
[35] Walkup, D. W. (1972). The number of plane trees. Mathematika 19 200–204. · Zbl 0253.05106
[36] Watabiki, Y. (1995). Construction of non-critical string field theory by transfer matrix formalism in dynamical triangulation. Nuclear Phys. B 441 119–163. · Zbl 0990.81657
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.