×

zbMATH — the first resource for mathematics

Point estimation with exponentially tilted empirical likelihood. (English) Zbl 1117.62024
Summary: Parameters defined via general estimating equations (GEE) can be estimated by maximizing the empirical likelihood (EL). W. K. Newey and R. J. Smith [Econometrica 72, No. 1, 219–255 (2004; Zbl 1151.62313)] have recently shown that this EL estimator exhibits desirable higher-order asymptotic properties, namely, that its \(O(n^{-1})\) bias is small and that the bias-corrected EL is higher-order efficient. Although EL possesses these properties when the model is correctly specified, this paper shows that, in the presence of model misspecification, EL may cease to be root n convergent when the functions defining the moment conditions are unbounded (even when their expectations are bounded). In contrast, the related exponential tilting (ET) estimator avoids this problem. This paper shows that the ET and EL estimators can be naturally combined to yield an estimator called exponentially tilted empirical likelihood (ETEL) exhibiting the same \(O(n^{-1})\) bias and the same \(O(n^{-2})\) variance as EL, while maintaining root \(n\) convergence under model misspecification.

MSC:
62F12 Asymptotic properties of parametric estimators
62F10 Point estimation
62J12 Generalized linear models (logistic models)
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Akaike, H. (1973). Information theory and an extension of the likelihood principle. In Proc. Second International Symposium on Information Theory (B. N. Petrov and F. Csáki, eds.) 267–281. Akadémiai Kiadó, Budapest. · Zbl 0283.62006
[2] Angrist, J., Chernozhukov, V. and Fernández-Val, I. (2006). Quantile regression under misspecification, with an application to the U.S. wage structure. Econometrica 74 539–563. · Zbl 1145.62399
[3] Back, K. and Brown, D. P. (1993). Implied probabilities in GMM estimators. Econometrica 61 971–975. JSTOR: · Zbl 0785.62031
[4] Baggerly, K. A. (1998). Empirical likelihood as goodness-of-fit measure. Biometrika 85 535–547. JSTOR: · Zbl 0918.62043
[5] Bickel, P. J. and Ghosh, J. K. (1990). A decomposition for the likelihood ratio statistic and the Bartlett correction—a Bayesian argument. Ann. Statist. 18 1070–1090. · Zbl 0727.62035
[6] Bonnal, H. and Renault, E. (2004). On the efficient use of the informational content of estimating equations: Implied probabilities and Euclidean empirical likelihood. Working paper, Univ. de Montréal. · Zbl 1418.62101
[7] Brown, B. W. and Newey, W. K. (2002). Generalized method of moments, efficient bootstrapping, and improved inference. J. Bus. Econom. Statist. 20 507–517. JSTOR:
[8] Chen, X., Hong, H. and Shum, M. (2002). Nonparametric likelihood selection tests for parametric versus moment condition models. Working paper, Johns Hopkins Univ.
[9] Cochrane, J. H. (1996). A cross-sectional test of an investment-based asset pricing model. J. Political Economy 104 572–621.
[10] Corcoran, S. A. (1998). Bartlett adjustment of empirical discrepancy statistics. Biometrika 85 967–972. · Zbl 1101.62330
[11] Cressie, N. and Read, T. R. C. (1984). Multinomial goodness-of-fit tests. J. Roy. Statist. Soc. Ser. B 46 440–464. JSTOR: · Zbl 0571.62017
[12] Csiszár, I. (1991). Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems. Ann. Statist. 19 2032–2066. · Zbl 0753.62003
[13] Dahlhaus, R. and Wefelmeyer, W. (1996). Asymptotically optimal estimation in misspecified time series models. Ann. Statist. 24 952–974. · Zbl 0865.62063
[14] DiCiccio, T. J., Hall, P. and Romano, J. P. (1991). Empirical likelihood is Bartlett-correctable. Ann. Statist. 19 1053–1061. · Zbl 0725.62042
[15] DiCiccio, T. J. and Romano, J. P. (1990). Nonparametric confidence limits by resampling methods and least favorable families. Internat. Statist. Rev. 58 59–76. · Zbl 0715.62090
[16] Fan, J., Zhang, C. and Zhang, J. (2001). Generalized likelihood ratio statistics and Wilks phenomenon. Ann. Statist. 29 153–193. · Zbl 1029.62042
[17] Golan, A., Judge, G. and Miller, D. (1996). Maximum Entropy Econometrics : Robust Estimation with Limited Data . Wiley, New York. · Zbl 0884.62126
[18] Hall, A. R. and Inoue, A. (2003). The large sample behavior of the generalized method of moments estimator in misspecified models. J. Econometrics 114 361–394. · Zbl 1014.62012
[19] Hall, P. and Horowitz, J. (1996). Bootstrap critical values for tests based on generalized-method-of-moment estimators. Econometrica 64 891–916. JSTOR: · Zbl 0854.62045
[20] Hampel, F. R. (1974). The influence curve and its role in robust estimation. J. Amer. Statist. Assoc. 69 383–393. JSTOR: · Zbl 0305.62031
[21] Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica 50 1029–1054. JSTOR: · Zbl 0502.62098
[22] Hansen, L. P., Heaton, J. and Yaron, A. (1996). Finite-sample properties of some alternative GMM estimators. J. Bus. Econom. Statist. 14 262–280.
[23] Hong, H., Preston, B. and Shum, M. (2003). Generalized empirical likelihood-based model selection criteria for moment condition models. Econometric Theory 19 923–943.
[24] Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73–101. · Zbl 0136.39805
[25] Huber, P. J. (1967). The behavior of maximum likelihood estimates under nonstandard conditions. Proc. Fifth Berkeley Symposium Math. Statist. Probab. 1 221–233. Univ. California Press, Berkeley. · Zbl 0212.21504
[26] Imbens, G. W. (1997). One-step estimators for over-identified generalized method of moments models. Rev. Econom. Stud. 64 359–383. JSTOR: · Zbl 0889.90039
[27] Imbens, G. W. (2002). Generalized method of moments and empirical likelihood. J. Bus. Econom. Statist. 20 493–506. JSTOR:
[28] Imbens, G. W. and Spady, R. H. (2001). The performance of empirical likelihood and its generalizations. In Identification and Inference for Econometric Models (D. W. K. Andrews, ed.) 216–244. Cambridge Univ. Press. · Zbl 1119.62023
[29] Imbens, G. W. and Spady, R. H. (2002). Confidence intervals in generalized method of moments models. J. Econometrics 107 87–98. · Zbl 1030.62021
[30] Imbens, G. W., Spady, R. H. and Johnson, P. (1998). Information-theoretic approaches to inference in moment condition models. Econometrica 66 333–357. JSTOR: · Zbl 1055.62512
[31] Jing, B.-Y. and Wood, A. T. A. (1996). Exponential empirical likelihood is not Bartlett correctable. Ann. Statist. 24 365–369. · Zbl 0893.62041
[32] Kitamura, Y. (2000). Comparing misspecified dynamic econometric models using nonparametric likelihood. Working paper, Dept. Economics, Univ. Wisconsin.
[33] Kitamura, Y. (2001). Asymptotic optimality of empirical likelihood for testing moment restrictions. Econometrica 69 1661–1672. JSTOR: · Zbl 0999.62012
[34] Kitamura, Y. (2003). A likelihood-based approach to the analysis of a class of nested and non-nested models. Working paper, Univ. Pennsylvania.
[35] Kitamura, Y. and Stutzer, M. (1997). An information-theoretic alternative to generalized method of moments estimation. Econometrica 65 861–874. JSTOR: · Zbl 0894.62011
[36] Kitamura, Y. and Stutzer, M. (2002). Connections between entropic and linear projections in asset pricing estimation. J. Econometrics 107 159–174. · Zbl 1030.62003
[37] Kolaczyk, E. D. (1994). Empirical likelihood for generalized linear models. Statist. Sinica 4 199–218. · Zbl 0824.62062
[38] Kullback, S. (1959). Information Theory and Statistics . Wiley, New York. · Zbl 0088.10406
[39] Lazar, N. A. and Mykland, P. (1999). Empirical likelihood in the presence of nuisance parameters. Biometrika 86 203–211. JSTOR: · Zbl 0917.62029
[40] Lee, S. M. S. and Young, G. A. (1999). Nonparametric likelihood ratio confidence intervals. Biometrika 86 107–118. JSTOR: · Zbl 0917.62043
[41] Maasoumi, E. and Phillips, P. C. B. (1982). On the behavior of inconsistent instrumental variable estimators. J. Econometrics 19 183–201. · Zbl 0503.62095
[42] Meghir, C. and Weber, G. (1996). Intertemporal nonseparability or borrowing restrictions? A disaggregate analysis using a U.S. consumption panel. Econometrica 64 1151–1181. · Zbl 0859.90050
[43] Mittelhammer, R. C., Judge, G. G. and Schoenberg, R. (2005). Empirical evidence concerning the finite sample performance of EL-type structural equation estimation and inference methods. In Identification and Inference for Econometric Models (D. W. K. Andrews and J. H. Stock, eds.) 285–305. Cambridge Univ. Press. · Zbl 1120.62107
[44] Monfort, A. (1996). A reappraisal of misspecified econometric models. Econometric Theory 12 597–619. JSTOR:
[45] Mykland, P. A. (1995). Dual likelihood. Ann. Statist. 23 396–421. · Zbl 0877.62004
[46] Newey, W. and McFadden, D. (1994). Large sample estimation and hypothesis testing. In Handbook of Econometrics 4 (R. F. Engle and D. L. McFadden, eds.) 2111–2245. North-Holland, Amsterdam.
[47] Newey, W. and Smith, R. J. (2004). Higher-order properties of GMM and generalized empirical likelihood estimators. Econometrica 72 219–255. JSTOR: · Zbl 1151.62313
[48] Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 237–249. JSTOR: · Zbl 0641.62032
[49] Owen, A. B. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18 90–120. · Zbl 0712.62040
[50] Owen, A. B. (2001). Empirical Likelihood . Chapman and Hall/CRC, New York. · Zbl 0989.62019
[51] Patilea, V. (2001). Convex models, MLE and misspecification. Ann. Statist. 29 94–123. · Zbl 1029.62020
[52] Pfanzagl, J. and Wefelmeyer, W. (1978). A third-order optimum property of the maximum likelihood estimator. J. Multivariate Anal. 8 1–29. · Zbl 0376.62019
[53] Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations. Ann. Statist. 22 300–325. · Zbl 0799.62049
[54] Ramalho, J. J. S. and Smith, R. J. (2002). Generalized empirical likelihood non-nested tests. J. Econometrics 107 99–125. · Zbl 1030.62036
[55] Rothenberg, T. J. (1984). Approximating the distribution of econometric estimators and test statistics. In Handbook of Econometrics 2 (Z. Griliches and M. D. Intriligator, eds.) 881–933. North-Holland, Amsterdam. · Zbl 0581.62022
[56] Sawa, T. (1978). Information criteria for discriminating among alternative regression models. Econometrica 46 1273–1291. JSTOR: · Zbl 0393.62025
[57] Schennach, S. M. (2005). Accompanying document to “Point estimation using exponentially tilted empirical likelihood.” Technical report, Univ. Chicago. Available at arxiv.org/abs/math/0512181. · Zbl 1068.62035
[58] Schennach, S. M. (2005). Bayesian exponentially tilted empirical likelihood. Biometrika 92 31–46. · Zbl 1068.62035
[59] Schennach, S. M. and Spady, R. H. (2003). Higher-order properties of GEL/EL estimators. Working paper, Univ. Chicago. Available at home.uchicago.edu/ smschenn/gelel01.pdf.
[60] Shore, J. and Johnson, R. (1980). Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inform. Theory 26 26–37. · Zbl 0429.94011
[61] Smith, R. J. (1997). Alternative semi-parametric likelihood approaches to generalized method of moments estimation. Economic J. 107 503–519.
[62] Spady, R. H. (1996). Nonparametric inference by quasi-likelihood methods. Working paper, Nuffield College.
[63] Vuong, Q. H. (1989). Likelihood ratio tests for model selection and non-nested hypotheses. Econometrica 57 307–333. JSTOR: · Zbl 0701.62106
[64] White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica 50 1–25. JSTOR: · Zbl 0478.62088
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.