Schick, Anton; Wefelmeyer, Wolfgang Uniformly root-\(n\) consistent density estimators for weakly dependent invertible linear processes. (English) Zbl 1117.62036 Ann. Stat. 35, No. 2, 815-843 (2007). Summary: Convergence rates of kernel density estimators for stationary time series are well studied. For invertible linear processes, we construct a new density estimator that converges, in the supremum norm, at the better, parametric, rate \(n^{-1/2}\). Our estimator is a convolution of two different residual-based kernel estimators. We obtain in particular convergence rates for such residual-based kernel estimators; these results are of independent interest. Cited in 20 Documents MSC: 62G07 Density estimation 62G20 Asymptotic properties of nonparametric inference 62M09 Non-Markovian processes: estimation 62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH) Keywords:least squares estimator; kernel estimator; plug-in estimator; functional limit theorem; infinite-order moving average process; infinite-order autoregressive process × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] Ango Nze, P. and Doukhan, P. (1998). Functional estimation for time series: Uniform convergence properties. J. Statist. Plann. Inference 68 5–29. · Zbl 0951.62074 · doi:10.1016/S0378-3758(97)00133-X [2] Ango Nze, P. and Portier, P. (1994). Estimation of the density and of the regression functions of an absolutely regular stationary process. Publ. Inst. Statist. Univ. Paris 38 59–88. · Zbl 0820.62033 [3] Ango Nze, P. and Rios, R. (2000). Density estimation in \(L^\infty\) norm for mixing processes. J. Statist. Plann. Inference 83 75–90. · Zbl 0970.62051 · doi:10.1016/S0378-3758(98)00171-2 [4] Berk, K. H. (1974). Consistent autoregressive spectral estimates. Ann. Statist. 2 489–502. · Zbl 0317.62064 · doi:10.1214/aos/1176342709 [5] Bryk, A. and Mielniczuk, J. (2005). Asymptotic properties of density estimates for linear processes: Application of projection method. J. Nonparametr. Statist. 17 121–133. · Zbl 1055.62031 · doi:10.1080/1048525042000267770 [6] Cai, Z. and Roussas, G. G. (1992). Uniform strong estimation under \(\alpha\)-mixing, with rates. Statist. Probab. Lett. 15 47–55. · Zbl 0757.62024 · doi:10.1016/0167-7152(92)90284-C [7] Castellana, J. V. and Leadbetter, M. R. (1986). On smoothed probability density estimation for stationary processes. Stochastic Process. Appl. 21 179–193. · Zbl 0588.62156 · doi:10.1016/0304-4149(86)90095-5 [8] Chanda, K. C. (1983). Density estimation for linear processes. Ann. Inst. Statist. Math. 35 439–446. · Zbl 0553.62035 · doi:10.1007/BF02481000 [9] Coulon-Prieur, C. and Doukhan, P. (2000). A triangular central limit theorem under a new weak dependence condition. Statist. Probab. Lett. 47 61–68. · Zbl 0956.60006 · doi:10.1016/S0167-7152(99)00138-8 [10] Dedecker, J. and Merlevède, F. (2002). Necessary and sufficient conditions for the conditional central limit theorem. Ann. Probab. 30 1044–1081. · Zbl 1015.60016 · doi:10.1214/aop/1029867121 [11] Doukhan, P. and Louhichi, S. (2001). Functional estimation of a density under a new weak dependence condition. Scand. J. Statist. 28 325–341. · Zbl 0973.62030 · doi:10.1111/1467-9469.00240 [12] Frees, E. W. (1994). Estimating densities of functions of observations. J. Amer. Statist. Assoc. 89 517–525. JSTOR: · Zbl 0798.62051 · doi:10.2307/2290854 [13] Giné, E. and Mason, D. M. (2007). On local \(U\)-statistic processes and the estimation of densities of functions of several sample variables. Ann. Statist. 35 . · Zbl 1175.60017 · doi:10.1214/009053607000000154 [14] Hall, P. and Hart, J. D. (1990). Convergence rates in density estimation for data from infinite-order moving average processes. Probab. Theory Related Fields 87 253–274. · Zbl 0695.60043 · doi:10.1007/BF01198432 [15] Hallin, M. and Tran, L. T. (1996). Kernel density estimation for linear processes: Asymptotic normality and optimal bandwidth derivation. Ann. Inst. Statist. Math. 48 429–449. · Zbl 0886.62042 · doi:10.1007/BF00050847 [16] Honda, T. (2000). Nonparametric density estimation for a long-range dependent linear process. Ann. Inst. Statist. Math. 52 599–611. · Zbl 0978.62029 · doi:10.1023/A:1017504723799 [17] Liebscher, E. (1999). Estimating the density of the residuals in autoregressive models. Stat. Inference Stoch. Process. 2 105–117. · Zbl 0956.62032 · doi:10.1023/A:1009924821271 [18] Lu, Z. (2001). Asymptotic normality of kernel density estimators under dependence. Ann. Inst. Statist. Math. 53 447–468. · Zbl 0989.62021 · doi:10.1023/A:1014652626073 [19] Masry, E. (1986). Recursive probability density estimation for weakly dependent stationary processes. IEEE Trans. Inform. Theory 32 254–267. · Zbl 0602.62028 · doi:10.1109/TIT.1986.1057163 [20] Masry, E. (1987). Almost sure convergence of recursive density estimators for stationary mixing processes. Statist. Probab. Lett. 5 249–254. · Zbl 0631.62040 · doi:10.1016/0167-7152(87)90100-3 [21] Masry, E. (1997). Multivariate probability density estimation by wavelet methods: Strong consistency and rates for stationary time series. Stochastic Process. Appl. 67 177–193. · Zbl 0885.62046 · doi:10.1016/S0304-4149(96)00005-1 [22] Masry, E. (2002). Multivariate probability density estimation for associated processes: Strong consistency and rates. Statist. Probab. Lett. 58 205–219. · Zbl 1092.62575 · doi:10.1016/S0167-7152(02)00105-0 [23] Müller, U. U., Schick, A. and Wefelmeyer, W. (2005). Weighted residual-based density estimators for nonlinear autoregressive models. Statist. Sinica 15 177–195. · Zbl 1059.62035 [24] Robinson, P. M. (1983). Nonparametric estimators for time series. J. Time Ser. Anal. 4 185–207. · Zbl 0544.62082 · doi:10.1111/j.1467-9892.1983.tb00368.x [25] Robinson, P. M. (1986). Nonparametric estimation from time series residuals. Cahiers Centre Études Rech. Opér. 28 197–202. · Zbl 0612.62053 [26] Robinson, P. M. (1987). Time series residuals with application to probability density estimation. J. Time Ser. Anal. 8 329–344. · Zbl 0625.62071 · doi:10.1111/j.1467-9892.1987.tb00445.x [27] Roussas, G. G. (1990). Asymptotic normality of the kernel estimate under dependence conditions: Application to hazard rate. J. Statist. Plann. Inference 25 81–104. · Zbl 0731.62092 · doi:10.1016/0378-3758(90)90008-I [28] Roussas, G. G. (1991). Kernel estimates under association: Strong uniform consistency. Statist. Probab. Lett. 12 393–403. · Zbl 0746.62045 · doi:10.1016/0167-7152(91)90028-P [29] Roussas, G. G. (2000). Asymptotic normality of the kernel estimate of a probability density function under association. Statist. Probab. Lett. 50 1–12. · Zbl 0958.62048 · doi:10.1016/S0167-7152(00)00072-9 [30] Rudin, W. (1974). Real and Complex Analysis , 2nd ed. McGraw-Hill, New York. · Zbl 0278.26001 [31] Saavedra, A. and Cao, R. (1999). Rate of convergence of a convolution-type estimator of the marginal density of an MA\((1)\) process. Stochastic Process. Appl. 80 129–155. · Zbl 0954.62044 · doi:10.1016/S0304-4149(98)00091-X [32] Saavedra, A. and Cao, R. (2000). On the estimation of the marginal density of a moving average process. Canad. J. Statist. 28 799–815. · Zbl 0966.62022 · doi:10.2307/3315917 [33] Schick, A. and Wefelmeyer, W. (2004). Root \(n\) consistent and optimal density estimators for moving average processes. Scand. J. Statist. 31 63–78. · Zbl 1053.62045 · doi:10.1111/j.1467-9469.2004.00373.x [34] Schick, A. and Wefelmeyer, W. (2004). Root \(n\) consistent density estimators for sums of independent random variables. J. Nonparametr. Statist. 16 925–935. · Zbl 1062.62065 · doi:10.1080/10485250410001713990 [35] Schick, A. and Wefelmeyer, W. (2004). Functional convergence and optimality of plug-in estimators for stationary densities of moving average processes. Bernoulli 10 889–917. · Zbl 1058.62072 · doi:10.3150/bj/1099579161 [36] Schick, A. and Wefelmeyer, W. (2005). Convergence rates in weighted \(L_1\) spaces of kernel density estimators for linear processes. Technical report, Dept. Mathematical Sciences, Binghamton Univ. · Zbl 1159.62035 [37] Schick, A. and Wefelmeyer, W. (2006). Pointwise convergence rates and central limit theorems for kernel density estimators in linear processes. Statist. Probab. Lett. 76 1756–1760. · Zbl 1098.62112 · doi:10.1016/j.spl.2006.04.021 [38] Schick, A. and Wefelmeyer, W. (2007). Root-\(n\) consistent density estimators of convolutions in weighted \(L_1\)-norms. J. Statist. Plann. Inference 137 1765–1774. · Zbl 1118.62040 · doi:10.1016/j.jspi.2006.06.041 [39] Tran, L. T. (1989). Recursive density estimation under dependence. IEEE Trans. Inform. Theory 35 1103–1108. · Zbl 0683.62022 · doi:10.1109/18.42230 [40] Tran, L. T. (1990). Recursive kernel density estimators under a weak dependence condition. Ann. Inst. Statist. Math. 42 305–329. · Zbl 0722.62028 · doi:10.1007/BF00050839 [41] Tran, L. T. (1990). Kernel density estimation under dependence. Statist. Probab. Lett. 10 193–201. · Zbl 0778.62036 · doi:10.1016/0167-7152(90)90073-G [42] Tran, L. T. (1992). Kernel density estimation for linear processes. Stochastic Process. Appl. 41 281–296. · Zbl 0758.62022 · doi:10.1016/0304-4149(92)90128-D [43] Wu, W. B. and Mielniczuk, J. (2002). Kernel density estimation for linear processes. Ann. Statist. 30 1441–1459. · Zbl 1015.62034 · doi:10.1214/aos/1035844982 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.