×

Complete enumeration of two-level orthogonal arrays of strength \(d\) with \(d+2\) constraints. (English) Zbl 1117.62077

Summary: Enumerating nonisomorphic orthogonal arrays is an important, yet very difficult, problem. Although orthogonal arrays with a specified set of parameters have been enumerated in a number of cases, general results are extremely rare. We provide a complete solution to enumerating nonisomorphic two-level orthogonal arrays of strength \(d\) with \(d+2\) constraints for any d and any run size \(n=\lambda2^d\). Our results not only give the number of nonisomorphic orthogonal arrays for given \(d\) and \(n\), but also provide a systematic way of explicitly constructing these arrays. Our approach to the problem is to make use of the recently developed theory of \(J\)-characteristics for fractional factorial designs. Besides the general theoretical results, the paper presents some results from applications of the theory to orthogonal arrays of strength two, three and four.

MSC:

62K15 Factorial statistical designs
05B15 Orthogonal arrays, Latin squares, Room squares
05A99 Enumerative combinatorics

Online Encyclopedia of Integer Sequences:

Number of nonisomorphic orthogonal arrays OA(8*n+4,4,2,2).

References:

[1] Blum, J. R., Schatz, J. A. and Seiden, E. (1970). On 2-level orthogonal arrays of odd index. J. Combinatorial Theory 9 239–243. · Zbl 0212.03502 · doi:10.1016/S0021-9800(70)80062-X
[2] Bulutoglu, D. A. and Margot, F. (2006). Classification of orthogonal arrays by integer programming. J. Statist. Plann. Inference. · Zbl 1139.62041 · doi:10.1016/j.jspi.2006.12.003
[3] Butler, N. A. (2003). Minimum aberration construction results for nonregular two-level fractional factorial designs. Biometrika 90 891–898. · Zbl 1436.62381 · doi:10.1093/biomet/90.4.891
[4] Chen, J. (1992). Some results on \(2^n-k\) fractional factorial designs and search for minimum aberration designs. Ann. Statist. 20 2124–2141. · Zbl 0770.62063 · doi:10.1214/aos/1176348907
[5] Chen, J., Sun, D. X. and Wu, C. F. J. (1993). A catalogue of two-level and three-level fractional factorial designs with small runs. Internat. Statist. Rev. 61 131–145. · Zbl 0768.62058 · doi:10.2307/1403599
[6] Cheng, C.-S. (1995). Some projection properties of orthogonal arrays. Ann. Statist. 23 1223–1233. · Zbl 0838.62061 · doi:10.1214/aos/1176324706
[7] Deng, L.-Y. and Tang, B. (1999). Generalized resolution and minimum aberration criteria for Plackett–Burman and other nonregular factorial designs. Statist. Sinica 9 1071–1082. · Zbl 0942.62084
[8] Deng, L.-Y. and Tang, B. (2002). Design selection and classification for Hadamard matrices using generalized minimum aberration criteria. Technometrics 44 173–184. JSTOR: · doi:10.1198/004017002317375127
[9] Dey, A. and Mukerjee, R. (1999). Fractional Factorial Plans . Wiley, New York. · Zbl 0930.62081
[10] Fries, A. and Hunter, W. G. (1980). Minimum aberration \(2^k-p\) designs. Technometrics 22 601–608. JSTOR: · Zbl 0453.62063 · doi:10.2307/1268198
[11] Fujii, Y., Namikawa, T. and Yamamoto, S. (1989). Classification of two-symbol orthogonal arrays of strength \(t\), \(t+3\) constraints and index 4. II. SUT J. Math. 25 161–177. · Zbl 0732.62072
[12] Hedayat, A. S., Seiden, E. and Stufken, J. (1997). On the maximal number of factors and the enumeration of 3-symbol orthogonal arrays of strength 3 and index 2. J. Statist. Plann. Inference 58 43–63. · Zbl 0897.05013 · doi:10.1016/S0378-3758(96)00059-6
[13] Hedayat, A. S., Sloane, N. J. A. and Stufken, J. (1999). Orthogonal Arrays : Theory and Applications . Springer, New York. · Zbl 0935.05001
[14] Lam, C. W. H. and Tonchev, V. D. (1996). Classification of affine resolvable 2-(27, 9, 4) designs. J. Statist. Plann. Inference 56 187–202. · Zbl 0874.05009 · doi:10.1016/S0378-3758(96)00018-3
[15] Li, Y., Deng, L.-Y. and Tang, B. (2004). Design catalog based on minimum \(G\)-aberration. J. Statist. Plann. Inference 124 219–230. · Zbl 1095.62093 · doi:10.1016/S0378-3758(03)00189-7
[16] Mukerjee, R. and Wu, C. F. J. (1999). Blocking in regular fractional factorials: A projective geometric approach. Ann. Statist. 27 1256–1271. · Zbl 0959.62066 · doi:10.1214/aos/1017938925
[17] Seiden, E. and Zemach, R. (1966). On orthogonal arrays. Ann. Math. Statist. 37 1355–1370. · Zbl 0147.19002 · doi:10.1214/aoms/1177699280
[18] Shirakura, T. (1977). Contributions to balanced fractional \(2^m\) factorial designs derived from balanced arrays of strength \(2l\). Hiroshima Math. J. 7 217–285. · Zbl 0368.62056
[19] Srivastava, J. N. (1972). Some general existence conditions for balanced arrays of strength \(t\) and 2 symbols. J. Combinatorial Theory Ser. A. 13 198–206. · Zbl 0243.05017 · doi:10.1016/0097-3165(72)90026-X
[20] Suen, C.-Y., Chen, H. and Wu, C. F. J. (1997). Some identities on \(q^n-m\) designs with application to minimum aberration designs. Ann. Statist. 25 1176–1188. · Zbl 0898.62095 · doi:10.1214/aos/1069362743
[21] Sun, D. X., Li, W. and Ye, K. Q. (2002). An algorithm for sequentially constructing nonisomorphic orthogonal designs and its applications.
[22] Tang, B. (2001). Theory of \(J\)-characteristics for fractional factorial designs and projection justification of minimum \(G_2\)-aberration. Biometrika 88 401–407. JSTOR: · Zbl 0984.62053 · doi:10.1093/biomet/88.2.401
[23] Wu, C. F. J. and Hamada, M. (2000). Experiments : Planning , Analysis , and Parameter Design Optimization . Wiley, New York. · Zbl 0964.62065
[24] Wu, H. and Wu, C. F. J. (2002). Clear two-factor interactions and minimum aberration. Ann. Statist. 30 1496–1511. · Zbl 1015.62083 · doi:10.1214/aos/1035844985
[25] Xu, H. (2005). A catalogue of three-level regular fractional factorial designs. Metrika 62 259–281. · Zbl 1078.62084 · doi:10.1007/s00184-005-0408-x
[26] Xu, H. and Wu, C. F. J. (2001). Generalized minimum aberration for asymmetrical fractional factorial designs. Ann. Statist. 29 1066–1077. · Zbl 1041.62067 · doi:10.1214/aos/1013699993
[27] Yamamoto, S., Fujii, Y., Hyodo, Y. and Yumiba, H. (1992). Classification of two-symbol orthogonal arrays of strength 2, size 16, 15 (maximal) constraints and index 4. SUT J. Math. 28 47–59. · Zbl 0755.62059
[28] Yamamoto, S., Fujii, Y., Hyodo, Y. and Yumiba, H. (1992). Classification of two-symbol orthogonal arrays of strength 2, size 20 and 19 (maximal) constraints. SUT J. Math. 28 191–209. · Zbl 0767.62067
[29] Ye, K. Q. (2003). Indicator function and its application in two-level factorial designs. Ann. Statist. 31 984–994. · Zbl 1028.62061 · doi:10.1214/aos/1056562470
[30] Yumiba, H., Hyodo, Y. and Yamamoto, S. (1997). Classification of two-symbol orthogonal arrays of size 24, strength 2, 6 constraints and index 6 derivable from saturated orthogonal arrays having 23 constraints. SUT J. Math. 33 47–63. · Zbl 0881.05032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.