zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Statistical challenges with high dimensionality: feature selection in knowledge discovery. (English) Zbl 1117.62137
Sanz-Solé, Marta (ed.) et al., Proceedings of the international congress of mathematicians (ICM), Madrid, Spain, August 22--30, 2006. Volume III: Invited lectures. Zürich: European Mathematical Society (EMS) (ISBN 978-3-03719-022-7/hbk). 595-622 (2006).
Summary: Technological innovations have revolutionized the process of scientific research and knowledge discovery. The availability of massive data and challenges from frontiers of research and development have reshaped statistical thinking, data analysis and theoretical studies. The challenges of high-dimensionality arise in diverse fields of sciences and the humanities, ranging from computational biology and health studies to financial engineering and risk management. In all of these fields, variable selection and feature extraction are crucial for knowledge discovery. We first give a comprehensive overview of statistical challenges with high dimensionality in these diverse disciplines. We then approach the problem of variable selection and feature extraction using a unified framework: penalized likelihood methods. Issues relevant to the choice of penalty functions are addressed. We demonstrate that for a host of statistical problems, as long as the dimensionality is not excessively large, we can estimate the model parameters as well as if the best model is known in advance. The persistence property in risk minimization is also addressed. The applicability of such a theory and method to diverse statistical problems is demonstrated. Other related problems with high-dimensionality are also discussed. For the entire collection see [Zbl 1095.00006].

62P99Applications of statistics
62A01Foundations and philosophical topics in statistics
62J99Linear statistical inference
62F12Asymptotic properties of parametric estimators
Full Text: arXiv