Weather forecasting for weather derivatives. (English) Zbl 1117.62305

Summary: We take a simple time series approach to modeling and forecasting daily average temperature in U.S. cities, and we inquire systematically as to whether it may prove useful from the vantage point of participants in the weather derivatives market. The answer is, perhaps surprisingly, yes. Time series modeling reveals conditional mean dynamics and, crucially, strong conditional variance dynamics in daily average temperature, and it reveals sharp differences between the distribution of temperature and the distribution of temperature surprises. As we argue, it also holds promise for producing the long-horizon predictive densities crucial for pricing weather derivatives, so that additional inquiry into time series weather forecasting methods will likely prove useful in weather derivatives contexts.


62-XX Statistics
Full Text: DOI Link