zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Full matching in an observational study of coaching for the sat. (English) Zbl 1117.62349
Summary: Among matching techniques for observational studies, full matching is in principle the best, in the sense that its alignment of comparable treated and control subjects is as good as that of any alternate method, and potentially much better. This article evaluates the practical performance of full matching for the first time, modifying it in order to minimize variance as well as bias and then using it to compare coached and uncoached takers of the SAT. In this new version, with restrictions on the ratio of treated subjects to controls within matched sets, full matching makes use of many more observations than does pair matching, but achieves far closer matches than does matching with $k\geqslant 2$ controls. Prior to matching, the coached and uncoached groups are separated on the propensity score by 1.1 SDs. Full matching reduces this separation to 1% or 2% of an SD. In older literature comparing matching and regression, Cochran expressed doubts that any method of adjustment could substantially reduce observed bias of this magnitude. To accommodate missing data, regression-based analyses by ETS researchers rejected a subset of the available sample that differed significantly from the subsample they analyzed. Full matching on the propensity score handles the same problem simply and without rejecting observations. In addition, it eases the detection and handling of nonconstancy of treatment effects, which the regression-based analyses had obscured, and it makes fuller use of covariate information. It estimates a somewhat larger effect of coaching on the math score than did ETS’s methods.

62-99Statistics (MSC2000)
Full Text: DOI Link