zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Causal inference using potential outcomes: design, modeling, decisions. (English) Zbl 1117.62418
Summary: Causal effects are defined as comparisons of potential outcomes under different treatments on a common set of units. Observed values of the potential outcomes are revealed by the assignment mechanism - a probabilistic model for the treatment each unit receives as a function of covariates and potential outcomes. Fisher made tremendous contributions to causal inference through his work on the design of randomized experiments, but the potential outcomes perspective applies to other complex experiments and nonrandomized studies as well. As noted by Kempthorne in his 1976 discussion of Savage’s Fisher lecture, Fisher never bridged his work on experimental design and his work on parametric modeling, a bridge that appears nearly automatic with an appropriate view of the potential outcomes framework, where the potential outcomes and covariates are given a Bayesian distribution to complete the model specification. Also, this framework crisply separates scientific inference for causal effects and decisions based on such inference, a distinction evident in Fisher’s discussion of tests of significance versus tests in an accept/reject framework. But Fisher never used the potential outcomes framework, originally proposed by Neyman in the context of randomized experiments, and as a result he provided generally flawed advice concerning the use of the analysis of covariance to adjust for posttreatment concomitants in randomized trials.

62-99Statistics (MSC2000)
Full Text: DOI Link