zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Computing the spectrum of non-self-adjoint Sturm-Liouville problems with parameter-dependent boundary conditions. (English) Zbl 1117.65117
Summary: This paper deals with the computation of the eigenvalues of non-self-adjoint Sturm-Liouville problems with parameter-dependent boundary conditions using the regularized sampling method. A few numerical examples among which singular ones will be presented to illustrate the merit of the method and comparison made with the exact eigenvalues when they are available.

65L15Eigenvalue problems for ODE (numerical methods)
34B24Sturm-Liouville theory
34L16Numerical approximation of eigenvalues and of other parts of the spectrum
Full Text: DOI arXiv
[1] Boumenir, A.: Sampling and eigenvalues of non self-adjoint Sturm -- Liouville problems. SIAM J. Sci. comput. 23, No. 1, 219-229 (2001) · Zbl 1006.34079
[2] Boumenir, A.; Chanane, B.: Eigenvalues of S -- L systems using sampling theory. Appl. anal. 62, 323-334 (1996) · Zbl 0864.34073
[3] P.B. Bailey, W.N. Everitt, A. Zettl, Computing Eigenvalues of Singular Sturm -- Liouville Problems, Results in Mathematics, vol. 20, Birkhauser Verlag, Basel, 1991. · Zbl 0755.65082
[4] Brown, B. M.; Langer, M.; Marletta, M.; Tretter, C.; Wagenhofer, M.: Eigenvalue bounds for the singular Sturm -- Liouville problem with a complex potential. J. phys. A: math. Gen. 36, 3773-3787 (2003) · Zbl 1058.34113
[5] Chanane, B.: Computation of the eigenvalues of Sturm -- Liouville problems with parameter dependent boundary conditions using the regularized sampling method. Math. comput. 74, No. 252, 1793-1801 (2005) · Zbl 1080.34010
[6] Chanane, B.: High order approximations of the eigenvalues of Sturm -- Liouville problems with coupled self-adjoint boundary conditions. Appl. anal. 80, 317-330 (2001) · Zbl 1031.34030
[7] Chanane, B.: High order approximations of the eigenvalues of regular Sturm -- Liouville problems. J. math. Anal. appl. 226, 121-129 (1998) · Zbl 0916.34029
[8] Chandrasekhar, S.: Hydrodynamic and hydromagnetic stability. (1961) · Zbl 0142.44103
[9] Chandrasekhar, S.: On the characteristic value problems in high order differential equations which arise in studies on hydrodynamic and hydromagnetic stability. Amer. math. Monthly 61, 32-45 (1955) · Zbl 0056.08303
[10] Davies, E. B.: Pseudospectra, the harmonic oscillator and the complex resonances. Proc. roy. Soc. London ser. A 455, 585-599 (1999) · Zbl 0931.70016
[11] Drazin, P. G.; Reid, W. H.: Hydrodynamic stability. (1981)
[12] Dunford, N.; Schwartz, J. T.: Linear operators, part III. (1971) · Zbl 0243.47001
[13] Edmunds, E. E.; Evans, W. D.: Spectral theory and differential operators. (1987) · Zbl 0628.47017
[14] Fulton, C. T.; Pruess, S. A.: Mathematical software for Sturm -- Liouville problems. ACM trans. Math. software 19, 360-376 (1993) · Zbl 0890.65087
[15] Greenberg, L.; Marletta, M.: Numerical solution of nonself-adjoint Sturm -- Liouville problems and related systems. SIAM, J. Numer. anal. 38, No. 6, 1800-1845 (2001) · Zbl 1001.34020
[16] Hinton, D.; Schaefer, P. W.: Spectral theory and computational methods of Sturm -- Liouville problems. (1997) · Zbl 0866.00046
[17] Lifschitz, A.: Magnetohydrodynamics and spectral theory. (1988) · Zbl 0698.76122
[18] Naimark, M. A.: Linear differential operators, part I. (1968) · Zbl 0227.34020
[19] Pryce, J. D.: Numerical solution of Sturm -- Liouville problems. (1993) · Zbl 0795.65053
[20] Zayed, A. I.: Advances in Shannon’s sampling theory. (1993) · Zbl 0868.94011