Numerical studies on nonlinear Schrödinger equations by spectral collocation method with preconditioning. (English) Zbl 1117.65141

Summary: We use the spectral collocation method with preconditioning to solve various nonlinear Schrödinger equations. To reduce round-off error in spectral collocation method we use preconditioning. We study the numerical accuracy of the method. The numerical results obtained by this way have been compared with the exact solution to show the efficiency of the method.


65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q55 NLS equations (nonlinear Schrödinger equations)
65F35 Numerical computation of matrix norms, conditioning, scaling
Full Text: DOI


[1] Baltensperger, R.; Berrut, J.P., The errors in calculating the pseudospectral differentiation matrices for chebyshev – gauss – lobatto point, Comput. math. appl., 37, 41-48, (1999) · Zbl 0940.65021
[2] Baltensperger, R.; Trummer, M.R., Spectral differencing with a twist, SIAM J. sci. comput., 24, 5, 1465-1487, (2003) · Zbl 1034.65016
[3] Bao, W.; Jaksch, D.; Markowich, P.A., Numerical solution of the gross – pitaevskii equation for bose – einstein condensation, J. comput. phys., 187, 1, 318-342, (2003) · Zbl 1028.82501
[4] Bao, W.; Wang, H.; Markowich, P.A., Ground, symmetric and central vortex states in rotating bose – einstein condensates, Comm. math. sci., 3, 1, 57-88, (2005) · Zbl 1073.82004
[5] Boyd, J.P., Chebyshev and Fourier spectral methods, Lecture notes in engineering, vol. 49, (1989), Springer-Verlag Berlin
[6] Canuto, C.; Quarteroni, A.; Hussaini, M.Y.; Zang, T., Spectral method in fluid mechanics, (1988), Springer-Verlag New York
[7] Cerimele, M.M.; Chiofalo, M.L.; Pistella, F.; Succi, S.; Tosi, M.P., Numerical solution of the gross – pitaevskii equation using an explicit finite-difference scheme: an application to trapped bose – einstein condensates, Phys. rev. E, 62, 1382-1389, (2000)
[8] Chang, Q.; Jia, E.; Sun, W., Difference schemes for solving the generalized nonlinear Schrödinger equation, J. comput. phys., 148, 397-415, (1999) · Zbl 0923.65059
[9] Darvishi, M.T., Preconditioning and domain decomposition scheme to solve pdes, Int. J. pure appl. math., 15, 4, 419-439, (2004) · Zbl 1127.65324
[10] Dion, C.M.; Cances, E., Spectral method for the time-dependent gross – pitaevskii equation with a harmonic trap, Phys. rev. E, 67, 046706-1-046706-9, (2003)
[11] Fairweather, G.; Khebchareon, M., Numerical methods for Schrödinger-type problems, (), 219-250
[12] Funaro, D., Polynomial approximation of differential equations, (1992), Springer-Verlag Berlin · Zbl 0774.41010
[13] Gardner, L.R.T.; Gardner, G.A.; Zaki, S.I.; El Sahrawi, Z., B-spline finite element studies of the non-linear Schrödinger equation, Comput. methods appl. mech. engrg., 108, 303-318, (1993) · Zbl 0842.65083
[14] Lai, M.C., A simple compact fourth-order Poisson solver on polar geometry, J. comput. phys., 182, 337-345, (2002) · Zbl 1016.65093
[15] Muruganandam, P.; Adhikari, S.K., Bose – einstein condensation dynamics in three dimensions by the pseudospectral and finite-difference methods, J. phys. B, 36, 2501-2513, (2003)
[16] Sulem, P.L.; Sulem, C.; Patera, A., Numerical simulation of singular solutions to the two-dimensional cubic Schrödinger equation, Comm. pure appl. math., 37, 755-778, (1984) · Zbl 0543.65081
[17] Sulem, C.; Sulem, P.L., The nonlinear Schrödinger equation, self-focusing and wave collapse, (1999), Springer New York · Zbl 0928.35157
[18] Taha, T.R., A numerical scheme for the nonlinear Schrödinger equation, Comput. math. appl., 22, 9, 77-84, (1991) · Zbl 0755.65130
[19] Wang, H., Numerical studies on the split-step finite difference method for nonlinear Schrödinger equation, Appl. math. comput., 170, 17-35, (2005) · Zbl 1082.65570
[20] Weideman, J.A.C.; Herbst, B.M., Split-step methods for the solution of the nonlinear Schrödinger equation, SIAM J. numer. anal., 23, 3, 485-507, (1986) · Zbl 0597.76012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.