zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical solution of differential equations by using Chebyshev wavelet operational matrix of integration. (English) Zbl 1117.65178
Summary: We present the operational matrix of integration of a Chebyshev wavelets basis and the product operation matrix of it. Some comparative examples are included to demonstrate the superiority of operational matrix of Chebyshev wavelets to those of Legendre wavelets.

65T60Wavelets (numerical methods)
65L05Initial value problems for ODE (numerical methods)
Full Text: DOI
[1] Razzaghi, M.; Yousefi, S.: Legendre wavelets direct method for variational problems. Math. comput. Simul., 185-192 (2000)
[2] Hwang, C.; Shih, Y. P.: Laguerre series direct method for variational problems. J. optim. Theory appl. 39, 143-149 (1983) · Zbl 0481.49005
[3] Chang, R. Y.; Wang, M. L.: Shifted Legendre direct method for variational problems series. J. optim. Theory appl. 39, 299-307 (1983) · Zbl 0481.49004
[4] Horng, I. R.; Chou, J. H.: Shifted Chebyshev direct method for variational problems. Int. J. Syst. sci. 16, 855-861 (1985) · Zbl 0568.49019
[5] Razzaghi, M.; Razzaghi, M.: Fourier series direct method for variational problems. Int. J. Control 48, 887-895 (1988) · Zbl 0651.49012
[6] Chen, C. F.; Hsiao, C. H.: Haar wavelet method for solving lumped and distributed parameter systems. IEEE proc. Control theory appl. 144, 87-93 (1997) · Zbl 0880.93014
[7] Maleknejad, K.; Kajani, M. Tavassoli; Mahmoudi, Y.: Numerical solution of linear Fredholm and Volterra integral equation of the second kind by using Legendre wavelets, kybernetes. Int. J. Syst. math. 32, 1530-1539 (2003) · Zbl 1059.65127
[8] Razzaghi, M.; Yousefi, S.: Legendre wavelets operational matrix of integration. Int. J. Syst. sci. 32, No. 4, 495-502 (2001) · Zbl 1006.65151
[9] Daubechies, I.: Ten lectures on wavelets. (1992) · Zbl 0776.42018
[10] Fox, L.; Parker, I. B.: Chebyshev polynomials in numerical analysis. (1968) · Zbl 0153.17502