×

Solving Maxwell’s equations using the ultra weak variational formulation. (English) Zbl 1117.78011

This paper is concerned with the development and validation of the ultra weak variational formulation (UWVF) for Maxwell’s equations. This method is based on a volume mesh and uses plane wave solutions of the Maxwell system on each element in the grid in the discretization procedure. It is also shown that the method can solve scattering problems such as scattering in a layered medium and scattering from a sphere where exact solutions are available. Potential future developments of the UWVF include: (i) theoretical estimates for the error and condition number for the UWVF; (ii) reduction in the number of directions in the plane wave basis; (iii) a better parametrization of surfaces and interfaces in the computational mesh; (iv) to improve the accuracy of the UWVF near singularities.

MSC:

78M30 Variational methods applied to problems in optics and electromagnetic theory
35A15 Variational methods applied to PDEs
49S05 Variational principles of physics
83C22 Einstein-Maxwell equations

Software:

COMSOL
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bérenger, J., Perfectly matched layer for the FDTD solution of wave-structure interaction problems, IEEE Trans. Antennas Propag., 44, 110-117 (1996)
[2] Carayol, Q.; Collino, F., Error estimates in the fast multipole method for scattering problems part 1: truncation of the Jacobi-Anger series, ESIAM: Mathematical Modeling and Numerical Analysis, 38, 371-394 (2004) · Zbl 1077.41027
[3] O. Cessenat, Application d’une nouvelle formulation variationnelle aux équations d’ondes harmoniques, Problèmes de Helmholtz 2D et de Maxwell 3D, Ph.D. Thesis, Université Paris IX Dauphine, 1996.; O. Cessenat, Application d’une nouvelle formulation variationnelle aux équations d’ondes harmoniques, Problèmes de Helmholtz 2D et de Maxwell 3D, Ph.D. Thesis, Université Paris IX Dauphine, 1996.
[4] Cessenat, O.; Després, B., Using plane waves as base functions for solving time harmonic equations with the Ultra Weak Variational Formulation, J. Comput. Acoust., 11, 227-238 (2003) · Zbl 1360.76127
[5] Chew, W. C.; Weedon, W. H., A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates, Microwave Opt. Technol. Lett., 7, 599-604 (1994)
[6] Colton, D.; Kress, R., Integral Equation Methods in Scattering Theory (1983), Wiley: Wiley New York · Zbl 0522.35001
[7] Colton, D.; Monk, P., Herglotz wave functions in inverse electromagnetic scattering theory, (Ainsworth, M.; Davies, P.; Duncan, D.; Martin, P.; Rynne, B., Topics in Computational Wave Propagation: Direct and Inverse Problems. Topics in Computational Wave Propagation: Direct and Inverse Problems, Lecture Notes in Computational Science and Engineering, vol. 31 (2003), Springer: Springer Berlin), 267-294
[8] Homepage of COMSOL Multiphysics software, 2006. Available from: <http://www.comsol.com>; Homepage of COMSOL Multiphysics software, 2006. Available from: <http://www.comsol.com>
[9] E. Darrigrand, P. Monk, Coupling of the ultra-weak variational formulation and an integral representation using a fast multipole method in electromagnetism, J. Comput. Appl. Math., in press.; E. Darrigrand, P. Monk, Coupling of the ultra-weak variational formulation and an integral representation using a fast multipole method in electromagnetism, J. Comput. Appl. Math., in press. · Zbl 1136.78008
[10] Darve, E., The fast multipole method: numerical implementation, J. Comput. Phys., 160, 195-240 (2000) · Zbl 0974.78012
[11] Hiptmair, R., Coupling of finite elements and boundary elements in electromagnetic scattering, SIAM J. Numer. Anal., 41, 919-944 (2003) · Zbl 1049.78021
[12] T. Huttunen, J. Kaipio, P. Monk, Parallelized UWVF method for 3D Helmholtz problems, in: 4th ECCOMAS, Jyvskyl, Finland, July 2004.; T. Huttunen, J. Kaipio, P. Monk, Parallelized UWVF method for 3D Helmholtz problems, in: 4th ECCOMAS, Jyvskyl, Finland, July 2004. · Zbl 1075.76648
[13] Huttunen, T.; Kaipio, J.; Monk, P., The perfectly matched layer for the ultra weak variational formulation of the 3D Helmholtz equation, Int. J. Numer. Meth. Eng., 61, 1072-1092 (2004) · Zbl 1075.76648
[14] Huttunen, T.; Monk, P.; Kaipio, J., Computational aspects of the ultra weak variational formulation, J. Comput. Phys., 182, 27-46 (2002) · Zbl 1015.65064
[15] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J. Sci. Comput., 20, 359-392 (1999) · Zbl 0915.68129
[16] Lesaint, P.; Raviart, P., On a finite element method for solving the neutron transport equation, (deBoor, C., Mathematical Aspects of Finite Element Methods in Partial Differential Equations (1974), Academic Press: Academic Press New York), 89-123
[17] Monk, P., Finite Element Methods for Maxwell’s Equations (2003), Oxford University Press: Oxford University Press Oxford · Zbl 1024.78009
[18] Nikol’skiy, V. V.; Lavrova, T. I., The method of minimum autonomous blocks and its application to wavequide diffraction problems, Radio Eng. Electron. Phys., 23, 1-10 (1978)
[19] Sloan, I.; Womersley, R., Extremal systems of points and numerical integration on the unit sphere, Adv. Comput. Math., 21, 107-125 (2004) · Zbl 1055.65038
[20] N. Sloane, Tables of spherical codes (with collaboration of R.H. Hardin, W.D. Smith and others) published electronically at http://www.research.att.com/njas/packings; N. Sloane, Tables of spherical codes (with collaboration of R.H. Hardin, W.D. Smith and others) published electronically at http://www.research.att.com/njas/packings
[21] Shlepnev, Y. O., Trefftz finite elements for electromagnetics, IEEE Trans. Microwave Theory, 50, 1328-1339 (2002)
[22] Weiland, T., A discretization method for the solution of Maxwell’s equations for six-component fields, Electron. Commun. AEUE, 31, 116-120 (1977)
[23] Weiland, T., Numerical solution of Maxwell’s equation for static, resonant and transient problems, (Berceli, T., Studies in Electrical and Electronic Engineering 28B. Studies in Electrical and Electronic Engineering 28B, URSI International Symposium on Electromagnetic Theory Part B (1986), Elsevier: Elsevier New York), 537-542
[24] Womersley, R.; Sloan, I., How good can polynomial interpolation on the sphere be?, Adv. Comput. Math., 14, 195-226 (2000) · Zbl 0980.41003
[25] Woo, A. C.; Wang, H. T.G.; Schuh, M. J.; Sanders, M. L., Benchmark radar targets for the validation of computational electromagnetics programs, IEEE Antennas Propag., 35, 84-89 (1993)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.