zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Morse theory in field theory. (English) Zbl 1117.81124
Mladenov, Ivaïlo (ed.) et al., Proceedings of the 8th international conference on geometry, integrability and quantization, Sts. Constantine and Elena, Bulgaria, June 9--14, 2006. Sofia: Bulgarian Academy of Sciences (ISBN 978-954-8495-37-0/pbk). 207-220 (2007).
Summary: We describe a geometrical interpretation of Topological Quantum Mechanics (TQM). Basics of the general topological theories are briefly discussed as well. The appropriate correspondence between objects of TQM and algebraic topology is pointed out. It is proved that the correlators in TQM can be expressed via intersection numbers of some submanifolds of the target space with paths of steepest descent between critical points. Another correspondence is only conjectured, namely the correspondence between correlators and an integral of Massey products on cohomology classes of the target manifold. For the entire collection see [Zbl 1108.53003].
81T45Topological field theories