zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical valuation of options with jumps in the underlying. (English) Zbl 1117.91028
Summary: A jump-diffusion model for a single-asset market is considered. Under this assumption the value of a European contingency claim satisfies a general partial integro-differential equation (PIDE). The equation is localized and discretized in space using finite differences and finite elements and in time by the second order backward differentiation formula (BDF2). The resulting system is solved by an iterative method based on a simple splitting of the matrix. Using the fast Fourier transform, the amount of work per iteration may be reduced to $O(n\log_2n)$ and only $O(n)$ entries need to be stored for each time level. Numerical results showing the quadratic convergence of the methods are given for Merton’s model and Kou’s model.

91B28Finance etc. (MSC2000)
Full Text: DOI
[1] Andersen, L.; Andreasen, J.: Jump-diffusion processes: volatility smile Fitting and numerical methods for option pricing. Rev. derivatives res. 4, 231-262 (2000) · Zbl 1274.91398
[2] Barndorff, O. E.: Processes of normal inverse Gaussian type. Finance stochast. 2, 41-68 (1998) · Zbl 0894.90011
[3] Bertoin, J.: Lévy processes. Cambridge tracts in mathematics 121 (1996)
[4] Black, F.; Scholes, M. S.: The pricing of options and corporate liabilities. J. political economy 7, 637-654 (1973) · Zbl 1092.91524
[5] Boyarchenko, S. I.; Levendorskiı\breve{}, S. Z.: Non-Gaussian Merton -- black -- Scholes theory. Advanced series on statistical science & applied probability 9 (2002) · Zbl 0997.91031
[6] M. Briani, C. La Chioma, R. Natalini, Convergence of numerical schemes for viscosity solutions to integro-differential degenerate parabolic problems arising in financial theory, Numer. Mat., in press · Zbl 1065.65145
[7] Carr, P. P.; Geman, H.; Madan, D. B.: The fine structure of asset returns: an empirical investigation. J. business (2002)
[8] Carr, P. P.; Madan, D. B.: Option valuation using the fast Fourier transform. J. comput. Finance 2, 61-73 (1999)
[9] Coleman, T. F.; Li, Y.; Verma, A.: Reconstructing the unknown local volatility function. J. comput. Finance 2, 77-100 (1999) · Zbl 0976.91019
[10] Das, S. R.; Foresi, S.: Exact solutions for Bond and option prices with systematic jump risk. Rev. derivatives res. 1, 7-24 (1996) · Zbl 1274.91448
[11] Delbaen, F.; Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. ann. 300, 463-520 (1994) · Zbl 0865.90014
[12] D’halluin, Y.; Forsyth, P. A.; Labahn, G.: A penalty method for American options with jump diffusion processes. Numer. math. 97, 321-352 (2004) · Zbl 1126.91036
[13] Dupire, B.: Pricing with a smile. RISK magazine 1, 18-20 (1999)
[14] Eberlein, E.: Application of generalized hyperbolic Lévy motions to finance. Lévy processes --- theory and applications, 319-336 (2001) · Zbl 0982.60045
[15] Gerber, H. U.; Shiu, E. S. W.: Option pricing by esscher transforms. Trans. soc. Actuaries 46, 99-140 (1995)
[16] Harrison, J. M.; Kreps, D. M.: Martingales and arbitrage in multiperiod securities markets. J. econom. Theory 20, 381-408 (1979) · Zbl 0431.90019
[17] Harrison, J. M.; Pliska, S. R.: Martingales and stochastic integrals in the theory of continuous trading. Stochastic process. Appl. 11, 215-260 (1981) · Zbl 0482.60097
[18] Heston, S.: A closed-form solution for options with stochastic volatility with applications to Bond and currency options. Rev. financ. Stud. 6, 327-343 (1993)
[19] Horn, R. A.; Johnson, C. R.: Topics in matrix analysis. (1994) · Zbl 0801.15001
[20] Hull, J.; White, A.: The pricing of options with stochastic volatilities. J. finance 42, 281-300 (1987)
[21] Karatzas, I.; Shreve, S. E.: Methods of mathematical finance. Applications of mathematics 39 (1998) · Zbl 0941.91032
[22] Kou, S. G.: A jump diffusion model for option pricing. Management sci. 48, 1086-1101 (2002) · Zbl 1216.91039
[23] S.G. Kou, H. Wang, Option pricing under a double exponential jump diffusion model, Working paper, Columbia University, 2001
[24] A.L. Lewis, A simple option formula for general jump-diffusion and other exponential Lévy processes, in: 8th. Annual CAP Workshop on Derivative Securities and Risk Management, November 2001
[25] A.M. Matache, T. von Petersdorff, C. Schwab, Fast deterministic pricing of options on Lévy driven assets, Working paper, ETH, Zürich, 2002 · Zbl 1072.60052
[26] Merton, R. C.: Option pricing when the underlying stocks are discontinuous. J. financ. Econ. 5, 125-144 (1976) · Zbl 1131.91344
[27] Meyer, G. H.: The numerical valuation of options with underlying jumps. Acta math. Univ. comenian 67, 69-82 (1998) · Zbl 0936.91019
[28] S. Raible, Lévy Processes in Finance: Theory, Numerics, and Empirical Facts, Ph.D. Thesis, Inst. für Mathematische Stochastik, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany, 2000 · Zbl 0966.60044
[29] Samuelson, P. A.: Rational theory of warrant pricing. Indust. management rev. 6, 13-32 (1965)
[30] Sato, K. -I.: Basic results on Lévy processes. Lévy processes --- theory and applications, 3-37 (2001)
[31] Van Loan, C.: Computational frameworks for the fast Fourier transform. Frontiers in applied mathematics 10 (1992) · Zbl 0757.65154
[32] Young, D. M.: Iterative solution of large linear systems. (1971) · Zbl 0231.65034