zbMATH — the first resource for mathematics

Modelling and simulation of transient noise in circuit simulation. (English) Zbl 1117.93305
Summary: This paper presents a new approach to the transient noise analysis of integrated circuits. This approach consists of two parts, the modelling of noise sources in the time domain and the development of numerical schemes for stochastic differential-algebraic equations. The noise sources include thermal noise, shot noise, and flicker noise and their modelling is based on generalized stochastic processes. Brownian motion is the starting point for the modelling of white-noise sources (thermal and shot noise), while fractional Brownian motion is used for flicker noise sources. The numerical schemes employed for the computation of solution paths adapt well-known methods for stochastic differential equations to the specific situation within circuit simulation. Under the assumption of small noise the convergence properties of the drift-implicit Euler scheme and the drift-implicit Milstein scheme are proved. Finally numerical experiments with real-world circuits are presented.

93A30 Mathematical modelling of systems (MSC2010)
93E03 Stochastic systems in control theory (general)
93C15 Control/observation systems governed by ordinary differential equations
94C05 Analytic circuit theory
Full Text: DOI
[1] Demir A., Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems (1998)
[2] Günther M., Surv. Math. Ind. 8 pp 97– (1999)
[3] Gray P., Analysis and Design of Analog Integrated Circuits (1993)
[4] Gelfand I. M., Verallgemeinerte Funktionen (1964)
[5] DOI: 10.1002/(SICI)1097-007X(199803/04)26:2<147::AID-CTA998>3.0.CO;2-E · Zbl 0915.94014 · doi:10.1002/(SICI)1097-007X(199803/04)26:2<147::AID-CTA998>3.0.CO;2-E
[6] DOI: 10.1137/1010093 · Zbl 0179.47801 · doi:10.1137/1010093
[7] Denk G., Modeling, Simulation and Optimization of Integrated Circuits pp 251– (2003) · doi:10.1007/978-3-0348-8065-7_16
[8] DOI: 10.3150/bj/1072215197 · Zbl 1047.60049 · doi:10.3150/bj/1072215197
[9] Winkler R., Proc. Scientific Computing in Electrical Engineering, Eindhoven, 2002 pp 408– (2004)
[10] DOI: 10.1016/S0377-0427(03)00436-9 · Zbl 1043.65010 · doi:10.1016/S0377-0427(03)00436-9
[11] Römisch W., To appear in SIAM J. Sci. Comput. (2003)
[12] DOI: 10.1137/S1064827594278575 · Zbl 0888.60047 · doi:10.1137/S1064827594278575
[13] DOI: 10.1016/S0377-0427(99)00304-0 · Zbl 0948.65003 · doi:10.1016/S0377-0427(99)00304-0
[14] Knuth D. E., The Art of Computer Programming I (1973) · Zbl 0302.68010
[15] Kampowsky W., Surv. Math. Ind. 2 pp 23– (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.