Li, Bao Qin Discrete interpolating varieties in pseudoconvex open sets of \(\mathbb C^n\). (English) Zbl 1118.32013 J. Math. Soc. Japan 58, No. 4, 1185-1196 (2006). Let \(\Omega\) be an open set in \({\mathbb C}^n\), and \(A(\Omega )\) the ring of holomorphic functions in \(\Omega\). The Hörmander algebra \(A_p(\Omega )\) associated with a plurisubharmonic function \(p:\Omega\to [0,\infty )\) (a Hörmander weight) is defined as \(A_p(\Omega)=\{ f\in A(\Omega ):\,\exists A,B>0:\;| f(z)| \leq Ae^{Bp(z)},\;z\in\Omega \}\), and the weight satisfies the following conditions: (i) all polynomials belong to \(A_p(\Omega )\); (ii) there exist constants \(K_1,\ldots, K_4\) such that \(z\in\Omega\) and \(| \zeta -z| \leq e^{-K_1p(z)-K_2}\) implies that \(\zeta\in\Omega\) and \(p(\zeta)\leq K_3p(z)+K_4\).The author proves that a necessary and sufficient condition for a discrete variety \(V\) in a pseudoconvex open set \(\Omega\subset {\mathbb C}^n\) to be an interpolating variety for \(A_p(\Omega)\) is that there exists a holomorphic mapping \(f:\Omega\to {\mathbb C}^n\) whose zero set contains \(V\) and whose Jacobian at the points \(\zeta\in V\) is bounded from below by \(\epsilon e^{-Cp(\zeta)}\), for some constants \(\epsilon, C>0\). Reviewer: Dmitry Kaliuzhnyi-Verbovetskyi (Philadelphia) Cited in 1 Document MSC: 32E30 Holomorphic, polynomial and rational approximation, and interpolation in several complex variables; Runge pairs 32A15 Entire functions of several complex variables 32C25 Analytic subsets and submanifolds 46E10 Topological linear spaces of continuous, differentiable or analytic functions Keywords:interpolating variety; pseudoconvex set; holomorphic function; weight PDF BibTeX XML Cite \textit{B. Q. Li}, J. Math. Soc. Japan 58, No. 4, 1185--1196 (2006; Zbl 1118.32013) Full Text: DOI Euclid References: [1] C. A. Berenstein and R. Gay, Complex Analysis and Special Topics in Harmonic Analysis, Springer-Verlag, New York, 1995. · Zbl 0837.30001 [2] C. A. Berenstein and B. Q. Li, Interpolating varieties for weighted spaces of entire functions in \(\bm{C}^n\), Publ. Mat., 38 (1994), 157-173. · Zbl 0820.32002 [3] C. A. Berenstein and D. C. Struppa, Solutions of convolution equations in convex sets, American J. Math., 109 (1987), 521-544. · Zbl 0628.46036 [4] C. A. Berenstein and B. A. Taylor, Interpolation problems in \(\bm{C}^n\) with application to harmonic analysis, J D’Analyse Mathématique, 38 (1981), 188-254. · Zbl 0464.42003 [5] L. Carleson, Interpolation by bounded analytic functions and the corona problem, Ann. of Math. (2), 76 (1962), 547-559. · Zbl 0112.29702 [6] L. Ehrenpreis, Fourier Analysis in Several Complex Variables, Wiley-Interscience, New-York, 1970. · Zbl 0195.10401 [7] R. Gunning, Introduction to Holomorphic Functions of Several Variables, I , Wadsworth, Inc., California, 1990. · Zbl 0699.32001 [8] L. Hörmander, Generators for some rings of analytic functions, Bull. Amer. Math. Soc., 73 (1967), 943-949. · Zbl 0172.41701 [9] L. Hörmander, An Introduction to Complex Analysis in Several Complex Variables, Third Edition, North-Holland, New York, 1990. [10] J. Horváth, Topological Vector Spaces and Distributions, Addison-Wesley, 1966. · Zbl 0143.15101 [11] J. Kelleher and B. A. Taylor, Finitely generated ideas in rings of analytic functions, Math. Ann., 193 (1971), 225-237. · Zbl 0207.12906 [12] B. Q. Li, Interpolating varieties for entire functions of minimal type, Adv. Math., 194 (2005), 87-104. · Zbl 1072.32002 [13] B. Q. Li and B. A. Taylor, On the Bézout problem and area of interpolating varieties in \(\), Amer. J. Math., 1189 (1996), 989-1010. · Zbl 0863.32002 [14] X. Massaneda, \(A^{-\infty}\) interpolation in the ball, Proc. Edinb. Math. Soc. (2), 41 (1998), 359-367. · Zbl 0891.32003 [15] S. Oh’uchi, Disjoint union of complex affine subspaces interpolating for \(A_p\), Forum Math., 11 (1999), 369-384. · Zbl 0929.32012 [16] M. Ounaies, Zéros d’applications holomorphes de \(\) dans \(\), Ark. Mat., 39 (2001), 375-381. · Zbl 1038.32016 [17] W. Rudin, Function theory in the unit ball of \(\), Springer-Verlag, Berlin, 1980. · Zbl 0495.32001 [18] D. C. Struppa, The fundamental principle for systems of convolution equations, Mem. Amer. Math. Soc., 273 (1981), 1-164. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.