×

Algebraic deformations of compact Kähler surfaces. (English) Zbl 1118.32016

The author proves a weakened version of K. Kodaira’s result [Ann. Math. (2) 78, 1–40 (1963; Zbl 0171.19601)] namely: Theorem. A non-algebraic compact Kähler surface \(X\) with \(H^2(X,\Theta_X)= 0\) has arbitrarily small deformations which are algebraic.
The proof makes no essentially no reference to the classification of surfaces.

MSC:

32J15 Compact complex surfaces
53C55 Global differential geometry of Hermitian and Kählerian manifolds
14J10 Families, moduli, classification: algebraic theory

Citations:

Zbl 0171.19601
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Barth, W., Peters, C., Van de Ven A.: Compact Complex Surfaces. Springer Berlin Heidelberg New York, 1984
[2] Buchdahl, No article title, Ann. Inst. Fourier., 49, 287, (1999) · Zbl 0926.32025
[3] Demailly, No article title, Ann. Math., 159, 1247, (2004) · Zbl 1064.32019
[4] Demailly, No article title, Comment. Math. Helv., 80, 229, (2005) · Zbl 1078.32014
[5] Kobayashi, No article title, Nagoya Math. J., 77, 5, (1980) · Zbl 0432.53049
[6] Kodaira, No article title, Ann. Math., 60, 28, (1954) · Zbl 0057.14102
[7] Kodaira, No article title, Ann. Math., 77, 1, (1963) · Zbl 0171.19601
[8] Kodaira, No article title, Amer. J. Math., 86, 751, (1964) · Zbl 0137.17501
[9] Lamari, No article title, Ann. Inst. Fourier., 49, 263, (1999) · Zbl 0926.32026
[10] Tjurin, A.N.: The space of moduli of a complex surface with \(q\)=0 and \(K\)=0. In: Algebraic Surfaces, Seminar Šhafarevič, Proc. Steklov Inst. 75 (1965). Amer. Math. Soc. Providence, 1967
[11] Voisin, C.: Hodge theory and complex algebraic geometry I. Stud. Adv. Math. pp 76 Cambridge: Cambridge University Press 2002
[12] Voisin, No article title, Invent. Math., 157, 329, (2004) · Zbl 1065.32010
[13] Voisin, C.: On the homotopy type of Kähler manifolds and the birational Kodaira problem. J. Differ. Geom. (To appear) · Zbl 1102.32008
[14] Yau, No article title, Comm. Pure Appl. Math., 31, 339, (1978) · Zbl 0369.53059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.