zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Oscillation of neutral differential equation with positive and negative coefficients. (English) Zbl 1118.34053
Summary: We provide oscillation properties of every solution of the neutral differential equation with positive and negative coefficients $$[x(t)-R(t) x(t-r)]'+P(t)x(t-\tau)-Q(t)x(t-\sigma)=0,$$ where $R(t)$, $P(t)$, $Q(t) \in C([t_0,\infty)$, $\bbfR^+)$, $r>0$, $\tau\ge 0,\sigma\ge 0$.

MSC:
34K11Oscillation theory of functional-differential equations
34K40Neutral functional-differential equations
WorldCat.org
Full Text: DOI
References:
[1] Chanturia, T. A.: Integral criteria for the oscillation of higher order differential equations. Differ. uravn. 16, 470-482 (1980)
[2] Chuanxi, Q.; Ladas, G.: Oscillation in differential equations with positive and negative coefficients. Canad. math. Bull. 33, 442-450 (1990) · Zbl 0723.34068
[3] Farrell, K.; Grove, E. A.; Ladas, G.: Neutral delay differential equations with positive and negative coefficients. Appl. anal. 27, 181-197 (1988) · Zbl 0618.34063
[4] Erbe, L. H.; Kong, Q.; Zhang, B. G.: Oscillation theory for functional differential equations. (1995) · Zbl 0821.34067
[5] Gyori, I.; Ladas, G.: Oscillation theory of delay differential equations with applications. (1991)
[6] Luo, Z. G.; Shen, J. H.; Liu, X. Z.: Oscillation criteria for a class of forced neutral equations. Dyn. contin. Discrete impuls. Syst. 7, 489-501 (2000) · Zbl 0978.34054
[7] Ruan, S. G.: Oscillations for first order neutral differential equations with variable coefficients. Bull. austral. Math. soc. 43, 147-152 (1991) · Zbl 0719.34135
[8] Shen, J. H.; Debnath, L.: Oscillations of solutions of neutral differential equations with positive and negative coefficients. Appl. math. Lett. 14, 775-781 (2001) · Zbl 1005.34056
[9] Tang, X. H.; Yu, J. S.: On the positive solutions to a kind of neutral equations with positive and negative coefficients. Math. appl. (Wuhan) 12, No. 2, 97-102 (1999) · Zbl 1017.34072
[10] Yu, J. S.; Yan, J.: Oscillation in first order neutral differential equations with an ”integrally small” coefficients. J. math. Anal. appl. 187, 361-370 (1994) · Zbl 0814.34062
[11] Tian, C. -J.; Cheng, S. S.: Oscillation criteria for delay neutral equations with positive and negative coefficients. Bol. soc. Parana. mat. 21, No. 1 -- 2, 19-30 (2003) · Zbl 1085.39013