zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A numerical method for the Cahn-Hilliard equation with a variable mobility. (English) Zbl 1118.35049
Summary: We consider a conservative nonlinear multigrid method for the Cahn-Hilliard equation with a variable mobility of a model for phase separation in a binary mixture. The method uses the standard finite difference approximation in spatial discretization and the Crank-Nicholson semi-implicit scheme in temporal discretization. And the resulting discretized equations are solved by an efficient nonlinear multigrid method. The continuous problem satisfies conservation of mass and decrease of the total energy. It is proved that these properties hold for the discrete problem. Also, we show the proposed scheme has a second-order convergence in space and time numerically. For numerical experiments, we investigate the effects of a variable mobility.

35Q72Other PDE from mechanics (MSC2000)
37L65Special approximation methods for infinite-dimensional Hamiltonian systems
65M55Multigrid methods; domain decomposition (IVP of PDE)
Full Text: DOI
[1] Bai, F. S.; Spence, A.; Stuart, A. M.: Numerical computations of coarsening in the one-dimensional Cahn -- Hilliard model of phase separation. Physica D 78, 155-165 (1994) · Zbl 0824.35127
[2] Cahn, J. W.: On spinodal decomposition. Acta metall 9, 795-801 (1961)
[3] Choo, S. M.; Chung, S. K.: Conservative nonlinear difference scheme for the Cahn -- Hilliard equation. Comput math appl 36, 31-39 (1998) · Zbl 0933.65098
[4] Choo, S. M.; Chung, S. K.; Kim, K. I.: Conservative nonlinear difference scheme for the Cahn -- Hilliard equation. II. Comput math appl 39, 229-243 (2000) · Zbl 0973.65067
[5] Copetti, M.; Elliott, C. M.: Kinetics of phase decomposition processes: numerical solutions to the Cahn -- Hilliard equation. Materials science and technology 6, 273-283 (1990)
[6] Cahn, J. W.; Hilliard, J. E.: Free energy of a non-uniform system. I. interfacial free energy. J chem phys 28, 258-267 (1958)
[7] Cahn, J. W.; Hilliard, J. E.: Spinodal decomposition: A reprise. Acta metall 19, 151-161 (1971)
[8] Cahn, J. W.; Taylor, J. E.: Surface motion by surface diffusion. Acta metall 42, 1045-1063 (1994)
[9] Elliott, C. M.; French, D. A.: Numerical studies of the Cahn -- Hilliard equation for phase separation. IMA J appl math 38, 97-128 (1987) · Zbl 0632.65113
[10] Eggleston, J. J.; Mcfadden, G. B.; Voorhees, P. W.: A phase-field model for highly anisotropic interfacial energy. Physica D 150, 91-103 (2001) · Zbl 0979.35140
[11] Furihata, D.: A stable and conservative finite difference scheme for the Cahn -- Hilliard equation. Numer math 87, 675-699 (2001) · Zbl 0974.65086
[12] Barrett, J. W.; Blowey, J. F.; Garcke, H.: Finite element approximation of the Cahn -- Hilliard equation with degenerate mobility. SIAM J numer anal 37, 286-318 (1999) · Zbl 0947.65109
[13] Trottenberg, U.; Oosterlee, C.; Schüller, A.: Multigrid. (2001)
[14] Ye, X.: The Legendre collocation method for the Cahn -- Hilliard equation. J comput appl math 150, 87-108 (2003) · Zbl 1043.65116
[15] Zhu, J.; Chen, L. Q.; Shen, J.; Tikare, V.: Coarsening kinetics from a variable mobility Cahn -- Hilliard equation -- application of semi-implicit Fourier spectral method. Phys rev E 60, 3564-3572 (1999)