zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Bohr--Neugebauer type theorem for some partial neutral functional differential equations. (English) Zbl 1118.35052
The authors study the existence of almost periodic solutions for the following partial neutral functional-differential equations $$\cases\frac{d}{dt}\mathcal{D}u_t=A\mathcal{D}u_t+L(u_t)+f(t)\quad\text{for }t\geq \sigma,\\ u_{\sigma}=\varphi\in C:=C([-r,0];X),\endcases$$ where $A$ is a linear operator on a Banach space $X$, not necessarily densely defined and satisfies the known Hille-Yosida condition; $C$ is endowed with the uniform topology; $\mathcal{D}:C\to X$ is a bounded linear operator having the form $\mathcal{D}\varphi:=\varphi(0)-\int_{-r}^0[d\eta(\theta)]\varphi(\theta)$. By using the variation of constants formula and the spectral decomposition of the phase space developed in {\it M. Adimy} et al. [Can. Appl. Math. Q. 9, No. 1, 1--34 (2001; Zbl 1112.34341)], they prove that the existence of an almost periodic solution is equivalent to the existence of a bounded solution on $\Bbb R^+$.

MSC:
35R10Partial functional-differential equations
35B15Almost and pseudo-almost periodic solutions of PDE
WorldCat.org
Full Text: DOI
References:
[1] Adimy, M.; Ezzinbi, K.: Equation de type neutre et semi groupes intégrés. Comptes rendus académie des sciences Paris 318, No. Série I, 529-534 (1994)
[2] Adimy, M.; Ezzinbi, K.: A class of linear partial neutral functional differential equations with non-dense domain. Journal of differential equations 147, No. 2, 285-332 (1998) · Zbl 0915.35109
[3] Adimy, M.; Ezzinbi, K.: Strict solutions of nonlinear hyperbolic neutral differential equations. Applied mathematics letters 12, 107-112 (1999) · Zbl 0941.34075
[4] Adimy, M.; Ezzinbi, K.: Existence and linearized stability for partial neutral functional differential equations. Differential equations and dynamical systems 7, 371-417 (1999) · Zbl 0983.34075
[5] Adimy, M.; Ezzinbi, K.: Existence and stability of solutions for a class of partial neutral functional differential equations. Hiroshima mathematical journal 34, No. 3, 251-294 (2004) · Zbl 1082.35159
[6] Adimy, M.; Ezzinbi, K.; Laklach, M.: Spectral decomposition for partial neutral functional differential equations. Canadian applied mathematics quarterly 9, No. 1, 1-34 (2001) · Zbl 1112.34341
[7] Arendt, W.; Batty, C. J. K.; Hieber, M.; Neubrander, F.: Vector-valued Laplace transforms and Cauchy problems. Monographs in mathematics 96 (2001) · Zbl 0978.34001
[8] Benkhalti, R.; Ezzinbi, K.: A massera type criterion for some partial functional differential equations. Dynamic systems and application 9, No. 2, 221-228 (2000) · Zbl 0953.34061
[9] Benkhalti, R.; Bouzahir, H.; Ezzinbi, K.: Existence of a periodic solution for some partial functional differential equations with infinite delay. Journal of mathematical analysis and applications 256, No. 1, 257-280 (2001) · Zbl 0981.35093
[10] Da Prato, G.; Sinestrari, E.: Differential operators with non dense domain. Annali scuola normale superiore di Pisa 14, No. 2, 285-344 (1987) · Zbl 0652.34069
[11] Engel, K. -J.; Nagel, R.: One-parameter semigroups of linear evolution equations. Graduate texts in mathematics 194 (2000)
[12] Ezzinbi, K.; Liu, J. H.: Periodic solutions of non-densely defined delay evolution equations. Journal of applied mathematics and stochastic analysis 15, No. 2, 113-123 (2002) · Zbl 1018.34063
[13] Fink, A.: Almost periodic differential equations. Lectures notes 377 (1974) · Zbl 0325.34039
[14] Furumouchi, T.; Naito, T.; Minh, N. V.: Boundedness and almost periodicity of solutions of partial functional differential equations. Journal of differential equations 180, No. 1, 125-152 (2002) · Zbl 1011.34068
[15] Hale, J. K.; Verduyn-Lunel, S. M.: Introduction to functional differential equations. Applied mathematical sciences 99 (1993) · Zbl 0787.34002
[16] Hale, J. K.: Partial neutral functional differential equations. Revue roumaine de mathématiques pures et appliquées 39, No. 4, 339-344 (1994)
[17] Hale, J. K.: Coupled oscillators on a circle. Resenhas do instituto de matemática e estatística da universidade de são paulo 1, No. 4, 441-457 (1994)
[18] Hino, Y.; Murakami, S.: Existence of an almost periodic solution of abstract linear functional differential equations with infinite delay. Dynamic systems and applications 5, No. 3, 385-399 (1996) · Zbl 0869.34055
[19] Massera, J. L.: The existence of periodic solutions of systems of differential equations. Duke mathematical journal 17, 457-475 (1950) · Zbl 0038.25002
[20] Murakami, S.; Naito, T.; Minh, N. V.: Massera theorem for almost periodic solutions of functional differential equations. Journal of mathematical society of Japan 56, 247-268 (2004) · Zbl 1070.34093
[21] Travis, C. C.; Webb, G. F.: Existence and stability for partial functional differential equations. Transactions of the American mathematical society 200, 395-418 (1974) · Zbl 0299.35085
[22] Zeidler, E.: Nonlinear functional analysis and its applications, tome I, fixed point theorems. (1993) · Zbl 0794.47033
[23] Webb, G. F.: Asymptotic stability for abstract nonlinear functional differential equations. Proceeding of the American mathematical society 54, 225-230 (1976) · Zbl 0324.34079
[24] Wu, J.: Theory and applications of partial functional differential equations. 119 (1996) · Zbl 0870.35116
[25] Wu, J.; Xia, H.: Self-sustained oscillations in a ring array of coupled lossless transmission lines. Journal of differential equations 124, No. 1, 247-278 (1996) · Zbl 0840.34080
[26] Wu, J.; Xia, H.: Rotating waves in neutral partial functional differential equations. Journal of dynamics and differential equations 11, No. 2, 209-238 (1999) · Zbl 0939.35188