zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Permanence for an integrodifferential model of mutualism. (English) Zbl 1118.45006
The authors obtain sufficient conditions, using the differential inequality theory, to ensure permanence of a two system of the integro-differential equation model for mutualism.

MSC:
45J05Integro-ordinary differential equations
WorldCat.org
Full Text: DOI
References:
[1] Li, Y. K.; Xu, G. T.: Positive periodic solutions for an integrodifferential model of mutualism. Appl. math. Lett. 14, 525-530 (2001) · Zbl 0981.45002
[2] Gopalsamy, K.: Stability and oscillations in delay differential equations of population dynamics. (1992) · Zbl 0752.34039
[3] Dean, A. M.: A simple model of mutualism. Am. natural 121, 409-417 (1983)
[4] Boucher, D. H.: The biology of mutualism, ecology and evolution. (1985)
[5] F.D. Chen, X.Y. Liao, Z.K. Huang, The dynamic behavior of N-species cooperation system with continuous time delays and feedback controls, Appl. Math. Comput., in press, doi:10.1016/j.amc.2006.02.007. · Zbl 1102.93021
[6] Cui, J. A.: Global asymptotic stability in n-species cooperative system with time delays. Syst. sci. Math. sci. 7, No. 1, 45-48 (1994) · Zbl 0807.34088
[7] Yang, P.; Xu, R.: Global asymptotic stability of periodic solution in n-species cooperative system with time delays. J. biomath. 13, No. 6, 841-846 (1998)
[8] Zhang, X.; Wang, K.: Almost periodic solution for n-species cooperative system with time delay. J. northeast normal univ. 34, No. 3, 9-13 (2002)
[9] F.Y. Wei, K. Wang, Asymptotically periodic solution of N-species cooperation system with time delay, Nonlinear Anal.: Real World Appl., in press.
[10] Zhao, J. D.; Jiang, J. F.: Average conditions for permanence and extinction in nonautonomous Lotka -- Volterra system. J. math. Anal. appl. 299, 663-675 (2004) · Zbl 1066.34050
[11] Chen, F. D.; Xie, X. D.; Shi, J. L.: Existence, uniqueness and stability of positive periodic solution for a nonlinear prey-competition model with delays. J. comput. Appl. math. 194, No. 2, 368-387 (2006) · Zbl 1104.34050
[12] F.D. Chen, Some new results on the permanence and extinction of nonautonomous Gilpin -- Ayala type competition model with delays, Nonlinear Anal.: Real World Appl., in press.
[13] Lisena, B.: Competitive exclusion in a periodic Lotka -- Volterra system. Appl. math. Comput. 177, No. 2, 761-768 (2006) · Zbl 1100.92070
[14] Muroya, Y.: Boundedness and partial survival of species in nonautonomous Lotka -- Volterra systems. Nonlinear anal.: real world appl. 6, No. 2, 263-272 (2005) · Zbl 1077.34077
[15] Francisco Montes de Oca and Miguel Vivas, Extinction in a two dimensional Lotka -- Volterra system with infinite delay, Nonlinear Anal.: Real World Appl., in press. · Zbl 1122.34058
[16] Tineo, A.: Asymptotic behavior of positive solutions of the nonautonomous Lotka -- Volterra competition equations. Differen. integral equat. 6, 419-457 (1993) · Zbl 0774.34037
[17] Hirsch, W.; Hanisch, H.; Gabriel, J.: Differential equation models of some parasitic infection-methods for the study of asymptotic behavior. Comm. pure appl. Math. 38, 733-753 (1985) · Zbl 0637.92008
[18] Chen, F. D.: Average conditions for permanence and extinction in nonautonomous gilpin -- ayala competition model. Nonlinear anal.: real world appl. 7, No. 4, 895-915 (2006) · Zbl 1119.34038
[19] Fan, M.; Wong, Patrica J. Y.; Agarwal, Ravi P.: Periodicity and stability in periodic n-species Lotka -- Volterra competition system with feedback controls and deviating arguments. Acta math. Sinica 19, No. 4, 801-822 (2003) · Zbl 1047.34080
[20] Chen, F. D.; Chen, X. X.; Chen, A. P.; Cao, J. D.: Positive periodic solutions of a class of non-autonomous single species population model with delays and feedback control. Acta math. Sinica 21, No. 6, 1319-1336 (2005) · Zbl 1110.34049
[21] Li, W. T.; Wang, L. L.: Existence and global attractivity of positive periodic solutions of functional differential equations with feedback control. J. comput appl. Math. 180, No. 2, 293-309 (2005) · Zbl 1069.34100
[22] Chen, F. D.: Global asymptotic stability in n-species nonautonomous Lotka -- Volterra competitive systems with infinite delays and feedback control. Appl. math. Comput. 170, No. 2, 1452-1468 (2005) · Zbl 1081.92038
[23] Chen, F. D.: The permanence and global attractivity of Lotka -- Volterra competition system with feedback controls. Nonlinear anal.: real world appl. 7, No. 1, 133-143 (2006) · Zbl 1103.34038
[24] Chen, F. D.; Lin, F. X.; Chen, X. X.: Sufficient conditions for the existence of positive periodic solutions of a class of neutral delay models with feedback control. Appl. math. Comput. 158, No. 1, 45-68 (2004) · Zbl 1096.93017
[25] Chen, F. D.: Positive periodic solutions of neutral Lotka -- Volterra system with feedback control. Appl. math. Comput. 162, No. 3, 1279-1302 (2005) · Zbl 1125.93031
[26] Chen, F. D.: On a nonlinear non-autonomous predator -- prey model with diffusion and distributed delay. J. comput. Appl. math. 180, No. 1, 33-49 (2005) · Zbl 1061.92058
[27] F.D. Chen, Z. Li, Y.J. Huang, Note on the permanence of a competitive system with infinite delay and feedback controls, Nonlinear Anal.: Real World Appl., in press.
[28] Hale, J. K.: Theory of functional differential equations. (1977) · Zbl 0352.34001