Wawrzyńczyk, Antoni Schur lemma and the spectral mapping formula. (English) Zbl 1118.46045 Bull. Pol. Acad. Sci., Math. 55, No. 1, 63-69 (2007). Summary: Let \(B\) be a complex topological unital algebra. The left joint spectrum of a set \(S\subset B\) is defined by the formula \[ \sigma_l(S)=\{(\lambda(s))_{s\in S}\in\mathbb C^S \mid \{s-\lambda(s)\}_{s\in S}\text{ generates a proper left ideal}\}. \]Using the Schur lemma and the Gelfand-Mazur theorem, we prove that \(\sigma_l(S)\) has the spectral mapping property for sets \(S\) of pairwise commuting elements if \(B\) is an \(m\)-convex algebra with all maximal left ideals closed, or if \(B\) is a locally convex Waelbroeck algebra. The right ideal version of this result is also valid. Cited in 1 Document MSC: 46H10 Ideals and subalgebras 46H30 Functional calculus in topological algebras 46H15 Representations of topological algebras Keywords:Waelbroeck algebra; joint spectrum; spectral mapping formula PDF BibTeX XML Cite \textit{A. Wawrzyńczyk}, Bull. Pol. Acad. Sci., Math. 55, No. 1, 63--69 (2007; Zbl 1118.46045) Full Text: DOI OpenURL