×

The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. (English) Zbl 1118.65370

Summary: The extended tanh method is used to establish abundant solitary wave solutions of nonlinear wave equations. The obtained solutions include solitons, kinks and plane periodic solutions. The study is an extension to the remarkable development by W. Malfliet [Am. J. Phys. 60, No. 7, 650–654 (1992)]. The extended tanh method presents a wider applicability for handling nonlinear wave equations.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35Q51 Soliton equations
35Q53 KdV equations (Korteweg-de Vries equations)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Malfliet, W., Solitary wave solutions of nonlinear wave equations, Am. J. phys., 60, 7, 650-654, (1992) · Zbl 1219.35246
[2] Malfliet, W.; Hereman, W., The tanh method. I: exact solutions of nonlinear evolution and wave equations, Phys. scr., 54, 563-568, (1996) · Zbl 0942.35034
[3] Malfliet, W.; Hereman, W., The tanh method. II: perturbation technique for conservative systems, Phys. scr., 54, 569-575, (1996) · Zbl 0942.35035
[4] Hereman, W.; Malfliet, W., (), 165-168
[5] Wazwaz, A.M., The tanh method for travelling wave solutions of nonlinear equations, Appl. math. comput., 154, 3, 713-723, (2004) · Zbl 1054.65106
[6] Wazwaz, A.M., The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations, Appl. math. comput., 49, 565-574, (2005) · Zbl 1070.35043
[7] Wazwaz, A.M., The tanh and the sine – cosine methods for a reliable treatment of the modified equal width equation and its variants, Comm. nonlinear sci. numer. simul., 11, 2, 148-160, (2006) · Zbl 1078.35108
[8] Wazwaz, A.M., The tanh and the sine – cosine methods for compact and noncompact solutions of the nonlinear klein – gordon equation, Appl. math. comput., 167, 2, 1179-1195, (2005) · Zbl 1082.65584
[9] Wazwaz, A.M., The tanh method: solitons and periodic solutions for the dodd – bullough – mikhailov and the tzitzeica – dodd – bullough equations, Chaos, solitons fractals, 25, 1, 55-63, (2005) · Zbl 1070.35076
[10] Wazwaz, A.M., The tanh method for generalized forms of nonlinear heat conduction and burgers – fisher equations, Appl. math. comput., 169, 321-338, (2005) · Zbl 1121.65359
[11] Wazwaz, A.M., Travelling wave solutions of generalized forms of Burgers, burgers – kdv and burgers – huxley equations, Appl. math. comput., 169, 639-656, (2005) · Zbl 1078.35109
[12] A.M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Appl. Math. Comput., in press, doi:10.1016/j.amc.2006.07.002. · Zbl 1115.65106
[13] A.M. Wazwaz, New solitary wave solutions to the modified forms of Degasperis-Procesi and Camass-Holm equations, Appl. Math. Comput., in press, doi:10.1016/j.amc.2006.07.092. · Zbl 1114.65124
[14] Wazwaz, A.M., Partial differential equations: methods and applications, (2002), Balkema Publishers The Netherlands · Zbl 0997.35083
[15] Wazwaz, A.M., Solitary wave solutions for modified forms of the degasperis – procesi and camassa – holm and equations, Phys. lett. A, 352, 500-504, (2006) · Zbl 1187.35199
[16] Wazwaz, A.M., A study on nonlinear dispersive partial differential equations of compact and noncompact solutions, Appl. math. comput., 135, 2-3, 399-409, (2003) · Zbl 1027.35120
[17] Wazwaz, A.M., A construction of compact and noncompact solutions of nonlinear dispersive equations of even order, Appl. math. comput., 135, 2-3, 324-411, (2003) · Zbl 1027.35121
[18] Wazwaz, A.M., Compactons in a class of nonlinear dispersive equations, Math. comput. modell., 37, 3-4, 333-341, (2003) · Zbl 1044.35078
[19] Wazwaz, A.M., Variants of the two-dimensional Boussinesq equations with compactons, solitons and periodic solutions, Comput. math. appl., 49, 295-301, (2005) · Zbl 1070.35042
[20] Wazwaz, A.M., New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations, Chaos, solitons compact., 22, 1, 249-260, (2004) · Zbl 1062.35121
[21] Wazwaz, A.M., Special types of the nonlinear dispersive zakharov – kuznetsov equation with compactons, solitons and periodic solutions, Int. J. comput. math., 81, 9, 1107-1119, (2004) · Zbl 1059.35131
[22] Wazwaz, A.M., A class of nonlinear fourth order variant of a generalized camassa – holm equation with compact and noncompact solutions, Appl. math. comput., 165, 485-501, (2005) · Zbl 1070.35044
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.