zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The extended tanh method for abundant solitary wave solutions of nonlinear wave equations. (English) Zbl 1118.65370
Summary: The extended tanh method is used to establish abundant solitary wave solutions of nonlinear wave equations. The obtained solutions include solitons, kinks and plane periodic solutions. The study is an extension to the remarkable development by {\it W. Malfliet} [Am. J. Phys. 60, No. 7, 650--654 (1992)]. The extended tanh method presents a wider applicability for handling nonlinear wave equations.

MSC:
65M70Spectral, collocation and related methods (IVP of PDE)
35Q51Soliton-like equations
35Q53KdV-like (Korteweg-de Vries) equations
WorldCat.org
Full Text: DOI
References:
[1] Malfliet, W.: Solitary wave solutions of nonlinear wave equations. Am. J. Phys. 60, No. 7, 650-654 (1992) · Zbl 1219.35246
[2] Malfliet, W.; Hereman, W.: The tanh method. I: exact solutions of nonlinear evolution and wave equations. Phys. scr. 54, 563-568 (1996) · Zbl 0942.35034
[3] Malfliet, W.; Hereman, W.: The tanh method. II: perturbation technique for conservative systems. Phys. scr. 54, 569-575 (1996) · Zbl 0942.35035
[4] Hereman, W.; Malfliet, W.: The tanh method: a tool to solve nonlinear partial differential equations with symbolic software. Proceedings 9th world multi-conference on systemics, 165-168 (2005)
[5] Wazwaz, A. M.: The tanh method for travelling wave solutions of nonlinear equations. Appl. math. Comput. 154, No. 3, 713-723 (2004) · Zbl 1054.65106
[6] Wazwaz, A. M.: The tanh method: exact solutions of the sine-Gordon and the sinh-Gordon equations. Appl. math. Comput. 49, 565-574 (2005) · Zbl 1082.65585
[7] Wazwaz, A. M.: The tanh and the sine -- cosine methods for a reliable treatment of the modified equal width equation and its variants. Comm. nonlinear sci. Numer. simul. 11, No. 2, 148-160 (2006) · Zbl 1078.35108
[8] Wazwaz, A. M.: The tanh and the sine -- cosine methods for compact and noncompact solutions of the nonlinear Klein -- Gordon equation. Appl. math. Comput. 167, No. 2, 1179-1195 (2005) · Zbl 1082.65584
[9] Wazwaz, A. M.: The tanh method: solitons and periodic solutions for the dodd -- bullough -- Mikhailov and the tzitzeica -- dodd -- bullough equations. Chaos, solitons fractals 25, No. 1, 55-63 (2005) · Zbl 1070.35076
[10] Wazwaz, A. M.: The tanh method for generalized forms of nonlinear heat conduction and Burgers -- Fisher equations. Appl. math. Comput. 169, 321-338 (2005) · Zbl 1121.65359
[11] Wazwaz, A. M.: Travelling wave solutions of generalized forms of Burgers, Burgers -- KdV and Burgers -- Huxley equations. Appl. math. Comput. 169, 639-656 (2005) · Zbl 1078.35109
[12] A.M. Wazwaz, The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations, Appl. Math. Comput., in press, doi:10.1016/j.amc.2006.07.002. · Zbl 1115.65106
[13] A.M. Wazwaz, New solitary wave solutions to the modified forms of Degasperis -- Procesi and Camass -- Holm equations, Appl. Math. Comput., in press, doi:10.1016/j.amc.2006.07.092. · Zbl 1114.65124
[14] Wazwaz, A. M.: Partial differential equations: methods and applications. (2002) · Zbl 1079.35001
[15] Wazwaz, A. M.: Solitary wave solutions for modified forms of the Degasperis -- Procesi and Camassa -- Holm and equations. Phys. lett. A 352, 500-504 (2006) · Zbl 1187.35199
[16] Wazwaz, A. M.: A study on nonlinear dispersive partial differential equations of compact and noncompact solutions. Appl. math. Comput. 135, No. 2 -- 3, 399-409 (2003) · Zbl 1027.35120
[17] Wazwaz, A. M.: A construction of compact and noncompact solutions of nonlinear dispersive equations of even order. Appl. math. Comput. 135, No. 2 -- 3, 324-411 (2003) · Zbl 1027.35121
[18] Wazwaz, A. M.: Compactons in a class of nonlinear dispersive equations. Math. comput. Modell. 37, No. 3 -- 4, 333-341 (2003) · Zbl 1044.35078
[19] Wazwaz, A. M.: Variants of the two-dimensional Boussinesq equations with compactons, solitons and periodic solutions. Comput. math. Appl. 49, 295-301 (2005) · Zbl 1070.35042
[20] Wazwaz, A. M.: New compactons, solitons and periodic solutions for nonlinear variants of the KdV and the KP equations. Chaos, solitons compact. 22, No. 1, 249-260 (2004) · Zbl 1062.35121
[21] Wazwaz, A. M.: Special types of the nonlinear dispersive Zakharov -- Kuznetsov equation with compactons, solitons and periodic solutions. Int. J. Comput. math. 81, No. 9, 1107-1119 (2004) · Zbl 1059.35131
[22] Wazwaz, A. M.: A class of nonlinear fourth order variant of a generalized Camassa -- Holm equation with compact and noncompact solutions. Appl. math. Comput. 165, 485-501 (2005) · Zbl 1070.35044