# zbMATH — the first resource for mathematics

Unifying evolutionary dynamics: from individual stochastic processes to macroscopic models. (English) Zbl 1118.92039
Summary: A distinctive signature of living systems is Darwinian evolution, that is, a propensity to generate as well as self-select individual diversity. To capture this essential feature of life while describing the dynamics of populations, mathematical models must be rooted in the microscopic, stochastic description of discrete individuals characterized by one or several adaptive traits and interacting with each other. The simplest models assume asexual reproduction and haploid genetics: an offspring usually inherits the trait values of her progenitor, except when a mutation causes the offspring to take a mutation step to new trait values; selection follows from ecological interactions among individuals.
We present a rigorous construction of the microscopic population process that captures the probabilistic dynamics over continuous time of birth, mutation, and death, as influenced by the trait values of each individual, and interactions between individuals. A by-product of this formal construction is a general algorithm for efficient numerical simulation of the individual-level model. Once the microscopic process is in place, we derive different macroscopic models of adaptive evolution. These models differ in the renormalization they assume, i.e., in the limits taken, in specific orders, on population size, mutation rate, mutation step, while rescaling time accordingly.
The macroscopic models also differ in their mathematical nature: deterministic, in the form of ordinary, integro-, or partial differential equations, or probabilistic, like stochastic partial differential equations or superprocesses. These models include extensions of M. Kimura’s equation [Proc. Natl. Acad. Sci. USA 54, 731–736 (1965; Zbl 0137.14404); Nature 217, 624–626 (1968)] (and of its approximation for small mutation effects) to frequency- and density-dependent selection. A novel class of macroscopic models obtains when assuming that individual birth and death occur on a short timescale compared with the timescale of typical population growth. On a timescale of very rare mutations, we establish rigorously the models of “trait substitution sequences” and their approximation known as the “canonical equation of adaptive dynamics”. We extend these models to account for mutation bias and random drift between multiple evolutionary attractors. The renormalization approach used in this study also opens promising avenues to study and predict patterns of life-history allometries, thereby bridging individual physiology, genetic variation, and ecological interactions in a common evolutionary framework.

##### MSC:
 92D15 Problems related to evolution 60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.) 60J85 Applications of branching processes 35Q92 PDEs in connection with biology, chemistry and other natural sciences 92D40 Ecology 65C20 Probabilistic models, generic numerical methods in probability and statistics
Full Text:
##### References:
 [1] Abrams, P.A., Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: an assessment of three methods, Ecol. lett., 4, 166-175, (2001) [2] Aldous, D., Stopping times and tightness, Ann. probab., 6, 335-340, (1978) · Zbl 0391.60007 [3] Asmussen, M.A., Density-dependent selection incorporating intraspecific competition. II. A diploid model, Genetics, 103, 335-350, (1983) [4] Barton, N.H.; Polechova, J., The limitations of adaptive dynamics as a model of evolution, J. evol. biol., 18, 1186-1190, (2005) [5] Belgrano, A.; Allen, A.P.; Enquist, B.J.; Gillooly, J.F., Allometric scaling of maximum population density: a common rule for marine phytoplankton and terrestrial plants, Ecol. lett., 5, 611-613, (2002) [6] Berstein, H.; Byerly, H.C.; Hopf, F.A.; Michod, R.E., Sex and the emergence of species, J. theor. biol., 117, 665-690, (1985) [7] Bolker, B.M.; Pacala, S.W., Using moment equations to understand stochastically driven spatial pattern formation in ecological systems, Theor. popul. biol., 52, 179-197, (1997) · Zbl 0890.92020 [8] Bolker, B.M.; Pacala, S.W., Spatial moment equations for plant competition: understanding spatial strategies and the advantages of short dispersal, Am. nat., 153, 575-602, (1999) [9] Brown, J.H.; Gillooly, J.F.; Allen, A.P.; Savage, V.M.; West, G.B., Toward a metabolic theory of ecology, Ecology, 85, 1771-1789, (2004) [10] Bulmer, M.G., Density-dependent selection and character displacement, Am. nat., 108, 45-58, (1974) [11] Bürger, R., Mathematical properties of mutation-selection models, Genetica, 102/103, 279-298, (1998) [12] Bürger, R., The mathematical theory of selection, recombination, and mutation, (2000), Wiley Chichester · Zbl 0959.92018 [13] Bürger, R., A multilocus analysis of intraspecific competition and stabilizing selection on a quantitative trait, J. math. biol., 50, 355-396, (2005) · Zbl 1062.92047 [14] Bürger, R.; Bomze, I.M., Stationary distributions under mutation-selection balance: structure and properties, Adv. appl. probab., 28, 227-251, (1996) · Zbl 0858.92022 [15] Bürger, R.; Gimelfarb, A., The effects of intraspecific competition and stabilizing selection on a polygenic trait, Genetics, 167, 1425-1443, (2004) [16] Calder III, W.A., Size, function, and life history, (1984), Harvard University Press Cambridge [17] Champagnat, N., 2003. Large deviations for diffusion models of adaptive dynamics. Preprint MODALX 03/23, University of Paris X. [18] Champagnat, N., 2004a. A microscopic interpretation for adaptive dynamics trait substitution sequence models. Preprint MODALX 04/20, University of Paris X. · Zbl 1100.60055 [19] Champagnat, N., 2004b. Étude mathématique de modèles stochastiques d’évolution issus de la théorie écologique des dynamiques adaptatives. Ph.D. Thesis, University of Paris X. [20] Champagnat, N.; Ferrière, R.; Ben Arous, G., The canonical equation of adaptive dynamics: a mathematical view, Selection, 2, 71-81, (2001) [21] Charnov, E.L., Life history invariants, (1993), Oxford University Press Oxford [22] Christiansen, F.B.; Loeschcke, V., Evolution and intraspecific exploitative competition. II. one-locus theory for small additive gene effects, Theor. popul. biol., 18, 297-313, (1980) · Zbl 0468.92013 [23] Crow, J.F.; Kimura, M., The theory of genetic loads, (), 495-505 [24] Damuth, J., Interspecific allometry of population density in mammals and other animals: the independence of body mass and population energy use, Biol. J. linn. soc., 31, 193-246, (1987) [25] Dembo, A.; Zeitouni, O., Large deviations techniques and applications, (1993), John and Barlett Publishers Boston · Zbl 0793.60030 [26] Dercole, F.; Ferrière, R.; Rinaldi, S., Ecological bistability and evolutionary reversals under asymmetrical competition, Evolution, 56, 1081-1090, (2002) [27] Desvillettes, L., Prévost, C., Ferrière, R., 2004. Infinite dimensional reaction-diffusion for evolutionary population dynamics. Preprint CMLA, Ecole Normale Supérieure de Cachan. [28] Dieckmann, U.; Ferrière, R., Adaptive dynamics and evolving biodiversity, (), 188-224 [29] Dieckmann, U.; Law, R., The dynamical theory of coevolution: a derivation from stochastic ecological processes, J. math. biol., 34, 579-612, (1996) · Zbl 0845.92013 [30] Dieckmann, U.; Law, R., Relaxation projections and the method of moments, (), 412-455 [31] Doebeli, M.; Dieckmann, U., Evolutionary branching and sympatric speciation caused by different types of ecological interactions, Am. nat., 156, S77-S101, (2000) [32] Durrett, R.; Levin, S., The importance of being discrete (and spatial), Theor. pop. biol., 46, 363-394, (1994) · Zbl 0846.92027 [33] Durrett, R.; Schweinsberg, J., Approximating selective sweeps, Theor. pop. biol., 66, 129-138, (2004) · Zbl 1111.92042 [34] Dynkin, E.B., Branching particle systems and superprocesses, Ann. probab., 19, 1157-1194, (1991) · Zbl 0732.60092 [35] Economo, E.P., Kerkhoff, A.J., Enquist, B.J., 2005. Allometric growth, life-history invariants and population energetics. Ecol.Lett. 8, 353-360. [36] Etheridge, A., Survival and extinction in a locally regulated population, Ann. appl. probab., 14, 188-214, (2004) · Zbl 1043.92030 [37] Ethier, S.N.; Kurtz, T.G., Markov processes: characterization and convergence, (1986), Wiley New York · Zbl 0592.60049 [38] Evans, S.N.; Perkins, E.A., Measure-valued branching diffusions with singular interactions, Can. J. math., 46, 120-168, (1994) · Zbl 0806.60039 [39] Ewens, J.W., 2004. Mathematical population genetics. I. Theoretical introduction. Interdisciplinary Applied Mathematics. vol. 27, second ed. Springer, Berlin. · Zbl 1060.92046 [40] Ferrière, R.; Gatto, M., Lyapunov exponents and the mathematics of invasion in oscillatory or chaotic populations, Theor. popul. biol., 48, 126-171, (1995) · Zbl 0863.92015 [41] Ferrière, R.; Bronstein, J.L.; Rinaldi, S.; Law, R.; Gauduchon, M., Cheating and the evolutionary stability of mutalism, Proc. R. soc. lond. B, 269, 773-780, (2002) [42] Ferrière, R.; Dieckmann, U.; Couvet, D., An introduction to evolutionary conservation biology, (), 1-14 [43] Fournier, N.; Méléard, S., A microscopic probabilistic description of a locally regulated population and macroscopic approximations, Ann. appl. probab., 14, 1880-1919, (2004) · Zbl 1060.92055 [44] Freidlin, M.I.; Wentzel, A.D., Random perturbations of dynamical systems, (1984), Springer Berlin · Zbl 0522.60055 [45] Geritz, S.A.H., Resident-invader dynamics and the coexistence of similar strategies, J. math. biol., 50, 67-82, (2004) · Zbl 1055.92042 [46] Geritz, S.A.H.; Kisdi, E.; Meszena, G.; Metz, J.A.J., Evolutionarily singular strategies and the adaptive growth and branching of the evolutionary tree, Evol. ecol., 12, 35-57, (1998) [47] Geritz, S.A.H.; Gyllenberg, M.; Jacobs, F.J.A.; Parvinen, K., Invasion dynamics and attractor inheritance, J. math. biol., 44, 548-560, (2002) · Zbl 0990.92029 [48] Gillooly, J.F.; Brown, J.H.; West, G.B.; Savage, V.M.; Charnov, E.L., Effects of size and temperature on metabolic rate, Science, 293, 2248-2251, (2001) [49] Gillooly, J.F.; Allen, A.P.; West, G.B.; Brown, J.H., The rate of DNA evolution: effects of body size and temperature on the molecular clock, Proc. natl acad. sci. USA, 102, 140-145, (2005) [50] Gosselin, F., Asymptotic behavior of absorbing Markov chains conditional on nonabsorption for applications in conservation biology, Ann. appl. probab., 11, 261-284, (2001) · Zbl 1019.60082 [51] Hairston, N.G.; Ellner, S.P.; Geber, M.A.; Yoshida, T.; Fox, J.A., Rapid evolution and the convergence of ecological and evolutionary time, Ecol. lett., 8, 1114-1127, (2005) [52] Haldane, J.B.S., The causes of evolution, (1932), Harper London · Zbl 0004.25803 [53] Hamilton, W.D., Extraordinary sex ratios, Science, 156, 477-488, (1967) [54] Heino, M.; Metz, J.A.J.; Kaitala, V., The enigma of frequency-dependence, Trends ecol. evol., 13, 367-370, (1998) [55] Hofbauer, J.; Sigmund, K., Evolutionary games and population dynamics, (1998), Oxford University Press Oxford · Zbl 0914.90287 [56] Hofbauer, J.; Sigmund, K., Evolutionary game dynamics, Bull. am. math. soc., 40, 479-519, (2003) · Zbl 1049.91025 [57] Jansen, V.A.A.; Mulder, G.S.E.E., Evolving biodiversity, Ecol. lett., 2, 379-386, (1999) [58] Joffe, A.; Métivier, M., Weak convergence of sequences of semimartingales with applications to multitype branching processes, Adv. appl. probab., 18, 20-65, (1986) · Zbl 0595.60008 [59] Kaplan, N.L.; Hudson, R.R.; Langley, C.H., The hitch-hiking effect revisited, Genetics, 123, 887-899, (1989) [60] Karatzas, I.; Shreve, S., Brownian motion and stochastic calculus, (1988), Springer New York · Zbl 0638.60065 [61] Kimura, M., A stochastic model concerning the maintenance of genetic variability in quantitative characters, Proc. natl acad. sci. USA, 54, 731-736, (1965) · Zbl 0137.14404 [62] Kimura, M., Evolutionary rate at the molecular level, Nature, 217, 624-626, (1968) [63] Kirkpatrick, M.; Rousset, F., Wright meets AD: not all landscapes are adaptive, J. evol. biol., 18, 1166-1169, (2004) [64] Kisdi, E., Evolutionary branching under asymmetric competition, J. theor. biol., 197, 149-162, (1999) [65] Lai, C.; Mackay, T., Hybrid dysgenesis-induced quantitative variation the $$X$$ chromosome of drosophila melanogaster, Genetics, 124, 627-636, (1990) [66] Law, R.; Murrell, D.J.; Dieckmann, U., Population growth in space and time: spatial logistic equations, Ecology, 84, 252-262, (2003) [67] MacLean, R.C., 2005. Adaptive radiation in microbial microcosms, J. Evol. Biol. 18, 1-11. [68] Matessi, C.; Di Pasquale, C., Long-term evolution of multilocus traits, J. math. biol., 34, 613-653, (1996) · Zbl 0851.92009 [69] Matsuda, H.; Ogita, N.; Sasaki, A.; Sato, K., Statistical mechanics of populations: the lattice Lotka-Volterra model, Progr. theor. phys., 88, 1035-1049, (1992) [70] Maynard Smith, J., Evolution and the theory of games, (1982), Cambridge University Press Cambridge · Zbl 0526.90102 [71] Maynard Smith, J.; Price, G., Logic of animal conflict, Nature, 246, 15-18, (1973) · Zbl 1369.92134 [72] McCarthy, M.C.; Enquist, B.J., Organismal size, metabolism and the evolution of complexity in metazoans, Evol. ecol. res., 7, 1-16, (2005) [73] McKane, A.J.; Newman, T.J., Stochastic models in population biology and their deterministic analogs, Phys. rev. E, 70, 041902, (2004) [74] Méléard, S.; Roelly, S., Sur LES convergences étroite ou vague de processus à valeurs mesures, C. R. acad. sci. Paris Sér. I math., 317, 785-788, (1993) · Zbl 0781.60071 [75] Metz, J.A.J.; Nisbet, R.M.; Geritz, S.A.H., How should we define ‘fitness’ for general ecological scenarios, Trends ecol. evol., 7, 198-202, (1992) [76] Metz, J.A.J.; Geritz, S.A.H.; Meszéna, G.; Jacobs, F.A.J.; van Heerwaarden, J.S., Adaptive dynamics, a geometrical study of the consequences of nearly faithful reproduction, (), 183-231 · Zbl 0972.92024 [77] Mukai, T., 1964. Polygenic mutation affecting quantitative character of Drosophila melanogaster. In: Mutations in Quantitative Traits. Proceedings of Gamma Field Symposium, vol. 3, Ministry of Agriculture, Japan, pp. 13-29. [78] Nagylaki, T., Dynamics of density- and frequency-dependent selection, Proc. natl acad. sci. USA, 76, 438-441, (1979) · Zbl 0396.92016 [79] Nowak, M.A.; Sigmund, K., Evolutionary dynamics of biological games, Science, 303, 793-799, (2004) [80] Page, K.; Nowak, M.A., Unifying evolutionary dynamics, J. theor. biol., 219, 93-98, (2002) [81] Pigliucci, M., Phenotypic integration: studying the ecology and evolution of complex phenotypes, Ecol. lett., 6, 265-272, (2003) [82] Pimentel, D., Population regulation and genetic feedback, Science, 159, 1432-1437, (1968) [83] Pomiankowski, A.; Iwasa, Y.; Nee, S., The evolution of costly mate preference I. Fisher and biased mutation, Evolution, 45, 1422-1430, (1991) [84] Rand, D.A.; Wilson, H.B., Evolutionary catastrophes, punctuated equilibria and gradualism in ecosystem evolution, Proc. R. soc. London B, 253, 137-141, (1993) [85] Rinaldi, S.; Scheffer, M., Geometric analysis of ecological models with slow and fast processes, Ecosystems, 3, 507-521, (2000) [86] Roelly, S., A criterion of convergence of measure-valued processes: application to measure branching processes, Stoch. stoch. rep., 17, 43-65, (1986) · Zbl 0598.60088 [87] Rokyta, D.R.; Joyce, P.; Caudle, S.B.; Wichman, H.A., An empirical test of the mutational landscape model of adaptation using a single-stranded DNA virus, Nature genet., 37, 441-444, (2005) [88] Schluter, D., The ecology of adaptive radiation, (2000), Oxford University Press Oxford [89] Slatkin, M., Frequency- and density-dependent selection on a quantitative character, Genetics, 93, 755-771, (1979) [90] Stadler, B.M.R.; Stadler, P.F.; Wagner, G.P.; Fontana, W., The topology of the possible: formal spaces underlying patterns of evolutionary change, J. theor. biol., 213, 241-274, (2001) [91] Stanley, S.M., Macroevolution: pattern and process, (1979), Freeman San Francisco [92] Stenseth, N.C., Darwinian evolution in ecosystems: A survey of some ideas and difficulties together with some possible solutions, (), 105-145 · Zbl 0581.92019 [93] Thompson, J.N., Rapid evolution as an ecological process, Trends ecol. evol., 13, 329-332, (1998) [94] Turchin, P., Evolution in population dynamics, Nature, 424, 257-258, (2003) [95] Walsh, J.B., 1984. An introduction to stochastic partial differential equations. École d’été de Saint-Flour. Lecture Notes in Mathematics, vol. 1180. Springer, Berlin, pp. 265-437. [96] Waxman, D., Numerical and exact solutions for continuum of alleles models, J. math. biol., 46, 225-240, (2003) · Zbl 1023.92019 [97] Wentzel, A.D., Rough limit theorems on large deviations for Markov random processes, I, Theor. probab. appl., 21, 227-242, (1976) · Zbl 0361.60005 [98] Wentzel, A.D., Rough limit theorems on large deviations for Markov random processes, II, Theor. probab. appl., 21, 499-512, (1976) · Zbl 0361.60006 [99] Wright, S., Evolution and the genetics of populations II, (1969), Chicago University Press Chicago [100] Yoshida, T.; Jones, L.E.; Ellner, S.P.; Fussmann, G.F.; Hairston, N.G., Rapid evolution drives ecological dynamics in a predator – prey system, Nature, 424, 303-306, (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.