zbMATH — the first resource for mathematics

System reduction using factor division algorithm and eigen spectrum analysis. (English) Zbl 1118.93028
Summary: A mixed method is proposed which combines the factor division algorithm with the eigen spectrum analysis for deriving reduced order models of high-order linear time invariant systems. Pole centroid and system stiffness of both original and reduced order systems remain same in this method. The proposed method guarantees stability of the reduced model if the original high-order system is stable and is comparable in quality with the other well known existing methods of order reduction. The method is illustrated by four numerical examples including one example of a multivariable system.

93B60 Eigenvalue problems
93B20 Minimal systems representations
93B55 Pole and zero placement problems
Full Text: DOI
[1] Genesio, R.; Milanese, M., A note on the derivation and use of reduced order models, IEEE trans. automat. control, AC-21, 1, 118-122, (1976) · Zbl 0317.93007
[2] Mahmoud, M.S.; Singh, M.G., Large scale systems modeling, International series on systems and control, vol. 3, (1981), Pergamon Press · Zbl 0466.93056
[3] Jamshidi, M., Large scale systems modelling and control series, vol. 9, (1983), North Holland Amsterdam, Oxford
[4] Jhou, K.; Doyle, J.C.; Glover, K., Robust and optimal control, (1996), Prentice Hall Upper Saddle River, New Jersey
[5] Varga, A., Model reduction software in the SLICOT library, ()
[6] Jhou, K., Frequency weighted L∞ error bounds, Syst. control lett., 21, 115-125, (1993)
[7] Mittal, A.K.; Prasad, R.; Sharma, S.P., Reduction of linear dynamic systems using an error minimization technique, J. inst. eng. India, IE (I) J. EL, 84, March, 201-206, (2004)
[8] Nagar, S.K.; Singh, S.K., An algorithmic approach for system decomposition and balanced realized model reduction, J. franklin inst., 341, 615-630, (2004) · Zbl 1077.93009
[9] Geromel, J.C.; Egas, R.G.; Kawaoka, F.R.R., H∞ model reduction with application to flexible systems, IEEE trans. automat. control., 50, 3, 402-406, (2005) · Zbl 1365.93134
[10] Mukherjee, S.; Satakshi; Mittal, R.C., Model order reduction using response matching technique, J. franklin inst., 342, 503-519, (2005) · Zbl 1091.93508
[11] Shamash, Y., Linear system reduction using pade approximation to allow retention of dominant modes, Int. J. control, 21, 2, 257-272, (1975) · Zbl 0296.93022
[12] Shamash, Y., Model reduction using the Routh stability criterion and the pade approximation technique, Int. J. control, 21, 3, 475-484, (1975) · Zbl 0299.93034
[13] Pal, J., Stable reduced order pade approximants using the Routh Hurwitz array, Electron. lett., 15, 8, 225-226, (1979), April
[14] Chen, T.C.; Chang, C.Y.; Han, K.W., Model reduction using the stability equation method and the continued fraction method, Int. J. control, 32, 1, 81-94, (1980) · Zbl 0437.93017
[15] Prasad, R.; Pal, J., Stable reduction of linear systems by continued fractions, J. inst. eng. India IE (I) J. EL, 72, October, 113-116, (1991)
[16] Prasad, R., Pade type model order reduction for multivariable systems using Routh approximation, Comput. electr. eng., 26, 445-459, (2000) · Zbl 1006.93543
[17] Singh, V.; Chandra, D.; Kar, H., Improved Routh pade approximants: a computer aided approach, IEEE trans. automat. control., 49, 2, 292-296, (2004) · Zbl 1365.93217
[18] Salimbahrami, B.; Lohmann, B., Order reduction of large scale second-order systems using Krylov subspace methods, Linear algebra appl., 415, 385-405, (2006) · Zbl 1103.93017
[19] Mukherjee, S., Order reduction of linear system using eigen spectrum analysis, J. inst. eng. India IE (I) J. EL, 77, August, 76-79, (1996)
[20] G. Parmar, S. Mukherjee, Order reduction using zero spectrum analysis, in: Int. Conf. Comput. Appl. Electr. Eng., Recent Advances (CERA-01), Indian Institute of Technology Roorkee, India, February 2002, pp. 450-454.
[21] Lucas, T.N., Factor division: a useful algorithm in model reduction, IEE proc., 130, 6, 362-364, (1983), November · Zbl 0515.93018
[22] Lal, M.; Mitra, R., Simplification of large system dynamics using a moment evaluation algorithm, IEEE trans. automat. control, AC-19, 602-603, (1974)
[23] Hutton, M.F.; Friedland, B., Routh approximations for reducing order of linear time invariant systems, IEEE trans. automat. control, AC-20, 3, 329-337, (1975), June · Zbl 0301.93026
[24] Edgar, T.F., Least squares model reduction using step response, Int. J. control, 22, 261-270, (1975) · Zbl 0311.93008
[25] Mukherjee, S.; Mishra, R.N., Order reduction of linear systems using an error minimization technique, J. franklin inst., 323, 1, 23-32, (1987) · Zbl 0606.93011
[26] Bistritz, Y.; Shaked, U., Minimal pade model reduction for multivariable systems, ASME J. dyn. syst. meas. control, 106, 293-299, (1984) · Zbl 0558.93016
[27] Gutman, P.; Mannerfelt, C.F.; Molander, P., Contributions to the model reduction problem, IEEE trans. automat. control, AC-27, 2, 454-455, (1982), April · Zbl 0488.93020
[28] Krishnamurthy, V.; Seshadri, V., Model reduction using the Routh stability criterion, IEEE trans. automat. control, AC-23, 4, 729-731, (1978), August
[29] Moore, B.C., Principal component analysis in linear systems: controllability, observability and model reduction, IEEE trans. automat. control, AC-26, 1, 17-32, (1981), February · Zbl 0464.93022
[30] Safonov, M.G.; Chiang, R.Y., A Schur method for balanced-truncation model reduction, IEEE trans. automat. control, 34, 7, 729-733, (1989) · Zbl 0687.93027
[31] Safonov, M.G.; Chiang, R.Y., Model reduction for robust control: a Schur relative error method, Int. J. adapt. control signal process., 2, 259-272, (1988) · Zbl 0731.93013
[32] Safonov, M.G.; Chiang, R.Y.; Limebeer, D.J.N., Optimal Hankel model reduction for nonminimal systems, IEEE trans. automat. control, 35, 4, 496-502, (1990) · Zbl 0704.93012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.