Graef, John R.; Kong, Lingju A necessary and sufficient condition for existence of positive solutions of nonlinear boundary value problems. (English) Zbl 1119.34020 Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 66, No. 11, 2389-2412 (2007). Summary: We study the nonlinear boundary value problem \[ (\varphi(u''))''= f(t,u,u',u''),\;t\in(0,1), \]\[ u^{(2i)}(0)=u^{(2i)}(1)=0,\;i=0,1, \] and obtain a necessary and sufficient condition for the existence of symmetric positive solutions. We also discuss the application of our result to the special case where \(f\) is a power function of \(u\) and its derivatives. Moreover, similar conclusions for a more general higher-order boundary value problem are established. Our analysis mainly relies on the lower and upper solution method. Cited in 13 Documents MSC: 34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations 34B15 Nonlinear boundary value problems for ordinary differential equations 34C14 Symmetries, invariants of ordinary differential equations Keywords:boundary value problems; existence; symmetric positive solutions; symmetric lower and upper solutions; Schauder fixed point theorem PDF BibTeX XML Cite \textit{J. R. Graef} and \textit{L. Kong}, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 66, No. 11, 2389--2412 (2007; Zbl 1119.34020) Full Text: DOI References: [1] Avery, R. I.; Henderson, J., Three symmetric positive solutions for a second-order boundary value problem, Appl. Math. Lett., 13, 1-7 (2000) · Zbl 0961.34014 [2] Cabada, A.; Grossinho, M. R.; Minhós, F., Extremal solutions for third-order nonlinear problems with upper and lower solutions in reversed order, Nonlinear Anal., 62, 1109-1121 (2005) · Zbl 1084.34013 [3] Cabada, A.; Pouso, R. L., Existence results for the problem \((\phi(u^\prime))^\prime = f(t, u, u^\prime)\) with nonlinear boundary conditions, Nonlinear Anal., 35, 221-231 (1999) · Zbl 0920.34029 [4] Chen, S.; Zhang, Y., Singular boundary value problems on a half-line, J. Math. Anal. Appl., 195, 449-468 (1995) · Zbl 0852.34019 [5] Davis, J. M.; Eloe, P. W.; Henderson, J., Triple positive solutions and dependence on higher order derivatives, J. Math. Anal. Appl., 237, 710-720 (1999) · Zbl 0935.34020 [6] Davis, J. M.; Erbe, L. H.; Henderson, J., Multiplicity of positive solutions for higher order Sturm-Liouville problems, Rocky Mountain J. Math., 31, 169-184 (2001) · Zbl 0989.34012 [7] Ehme, J.; Eloe, P. W.; Henderson, J., Upper and lower solution methods for fully nonlinear boundary value problems, J. Differential Equations, 180, 51-64 (2002) · Zbl 1019.34015 [8] Franco, D.; O’Regan, D.; Perán, J., Fourth-order problems with nonlinear boundary conditions, J. Comput. Appl. Math., 174, 315-327 (2005) · Zbl 1068.34013 [10] Graef, J. R.; Qian, C.; Yang, B., Multiple symmetric positive solutions of a class of boundary value problems for higher order ordinary differential equations, Proc. Amer. Math. Soc., 131, 577-585 (2003) · Zbl 1046.34037 [11] Henderson, J.; Thompson, H. B., Multiple symmetric positive solutions for a second order boundary value problem, Proc. Amer. Math. Soc., 128, 2373-2379 (2000) · Zbl 0949.34016 [12] Kong, L.; Kong, Q., Positive solutions of higher-order boundary-value problems, Proc. Edinburgh Math. Soc., 48, 445-464 (2005) · Zbl 1084.34023 [13] Shi, G.; Chen, S., Positive solutions of even higher-order singular superlinear boundary value problems, Comput. Math. Appl., 45, 593-603 (2003) · Zbl 1054.34039 [14] Wang, H., On the number of positive solutions of nonlinear systems, J. Math. Anal. Appl., 281, 287-306 (2003) · Zbl 1036.34032 [15] Wang, H., On the structure of positive radial solutions for quasilinear equations in annular domain, Adv. Differential Equations, 8, 111-128 (2003) · Zbl 1042.34052 [16] Wei, Z., Positive solutions of singular boundary value problems of fourth order differential equations, Acta Math. Sin., 42, 715-722 (1999) · Zbl 1022.34018 [17] Wei, Z., Existence of positive solutions for 2nth-order singular sublinear boundary value problems, J. Math. Anal. Appl., 306, 619-636 (2005) · Zbl 1078.34010 [18] Xu, Y.; Li, L.; Debnath, L., A necessary and sufficient condition for the existence of positive solutions of singular boundary value problems, Appl. Math. Lett., 18, 881-889 (2005) · Zbl 1095.34013 [19] Zhao, Z., Positive solutions of boundary value problems for nonlinear singular differential equations, Acta Math. Sin., 43, 179-188 (2000) · Zbl 1018.34018 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.