zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Further results on periodic boundary value problems for nonlinear first order impulsive functional differential equations. (English) Zbl 1119.34062
Impulsive differential equations play an important role in the study of processes with instantaneous changes. Motivated by many works, the author gives sufficient conditions for the existence of at least one solution of a nonlinear impulsive functional differential equation at resonance and nonresonance cases.

MSC:
34K45Functional-differential equations with impulses
34K10Boundary value problems for functional-differential equations
WorldCat.org
Full Text: DOI
References:
[1] Nieto, J. J.: Impulsive resonance periodic problems of first order. Appl. math. Lett. 15, 489-493 (2002) · Zbl 1022.34025
[2] Franco, D.; Nieto, J. J.: Maximum principles for periodic impulsive first order problems. J. comput. Appl. math. 88, 144-159 (1998) · Zbl 0898.34010
[3] Nieto, J. J.: Basic theory for nonresonance impulsive periodic problems of first order. J. math. Anal. appl. 205, 423-433 (1997) · Zbl 0870.34009
[4] He, Z.; Yu, J.: Periodic boundary value problems for first order impulsive ordinary differential equations. J. math. Anal. appl. 272, 67-78 (2002) · Zbl 1016.34023
[5] Ladde, G. S.; Lakshmikantham, V.; Vatsala, A. S.: Monotone iterative techniques for nonlinear differential equations. Pitman advanced publishing program (1985) · Zbl 0658.35003
[6] Cabada, A.: The method of lower and upper solutions for second, third, fourth, and higher order boundary value problems. J. math. Anal. appl. 185, 302-320 (1994) · Zbl 0807.34023
[7] Cabada, A.; Nieto, J. J.; Franco, D.; Trofimchuk, S. I.: A generalization of the monotone method for second order periodic boundary value problems with impulses at fixed points. Dyn. contin. Discrete impuls. Syst. 7, 145-158 (2000) · Zbl 0953.34020
[8] Franco, D.; Nieto, J. J.: First order impulsive ordinary differential equations with anti-periodic and nonlinear boundary value conditions. Nonlinear anal. 42, 163-173 (2000) · Zbl 0966.34025
[9] Franco, D.; Nieto, J. J.: A new maximum principle for impulsive first order problems. Internat. J. Theoret. phys. 37, 1607-1616 (1998) · Zbl 0946.34024
[10] Jiang, D.; Nieto, J. J.; Zuo, W.: On monotone method for first order and second order periodic boundary value problems and periodic solutions of functional differential equations. J. math. Anal. appl. 289, 691-699 (2004) · Zbl 1134.34322
[11] Hakl, R.; Lomtatidze, A.; Puza, B.: On a boundary value problem for first order scalar functional differential equations. Nonlinear anal. 53, 391-405 (2003) · Zbl 1024.34056
[12] Liu, Y.; Ge, W.: Stability theorems and existence results for periodic solutions of nonlinear impulsive delay differential equations with variable coefficients. Nonlinear anal. 57, 363-399 (2004) · Zbl 1064.34051
[13] Nieto, J. J.: Periodic boundary value problems for first order impulsive ordinary differential equations. Nonlinear anal. 51, 1223-1232 (2002) · Zbl 1015.34010
[14] Cabada, A.: The monotone method for first order problems with linear and nonlinear boundary conditions. Appl. math. Comput. 63, 163-186 (1994) · Zbl 0807.34022
[15] Nieto, J. J.; Alvarez-Noriega, N.: Periodic boundary value problems for nonlinear first order ordinary differential equations. Acta math. Hungar. 71, 49-58 (1996) · Zbl 0853.34023
[16] Pierson-Gorez, C.: Impulsive differential equations of first order with periodic boundary conditions. Diff. equ. Dyn. syst. 1, 185-196 (1993) · Zbl 0868.34007
[17] Smart, D. R.: Fixed point theorems. (1980) · Zbl 0427.47036
[18] Gaines, R. E.; Mawhin, J. L.: Coincidence degree and nonlinear differential equations. Lecture notes in math. 568 (1977) · Zbl 0339.47031
[19] Vatsala, A. S.; Sun, Y.: Periodic boundary value problems of impulsive differential equations. Appl. anal. 44, 145-158 (1992) · Zbl 0753.34008
[20] Liu, X.: Nonlinear boundary value problems for first order impulsive integro-differential equations. Appl. anal. 36, 119-130 (1990) · Zbl 0671.34018
[21] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations. (1989) · Zbl 0719.34002
[22] Lakshmikantham, V.; Leela, S.: Remarks on first and second order periodic boundary value problems. Nonlinear anal. 8, 281-287 (1984) · Zbl 0532.34029
[23] Bainov, D. D.; Simeonov, P. S.: Systems with impulse effect: stability, theory and applications. (1989) · Zbl 0676.34035
[24] Avery, R. I.; Chyan, C. J.; Henderson, J.: Twin solutions of boundary value problems for ordinary differential equations and finite difference equations. Comput. math. Appl. 42, 695-704 (2001) · Zbl 1006.34022
[25] Guo, D.: Periodic boundary value problems for second order impulsive integro-differential equations in Banach spaces. Nonlinear anal. 28, 983-997 (1997) · Zbl 0957.34057
[26] Guo, D.; Liu, X.: Multiple positive solutions of boundary-value problems for impulsive differential equations. Nonlinear anal. 25, 327-337 (1995) · Zbl 0840.34015
[27] Liu, Y.; Ge, W.: Existence theorems for positive solutions of fourth-order boundary value problems. Anal. appl. 2, No. 1, 71-86 (2004) · Zbl 1050.34009
[28] Liu, Y.; Ge, W.: Twin positive solutions of BVPs for finite difference equations with p-Laplacian. J. math. Anal. appl. 278, 551-561 (2003) · Zbl 1019.39002
[29] Guo, D.; Liu, X.: Multiple positive solutions of boundary-value problems for impulsive differential equations. Nonlinear anal. 25, 327-337 (1995) · Zbl 0840.34015
[30] Guo, D.: Multiple positive solutions for first order impulsive integro-differential equations in a Banach space. Appl. math. Comput. 143, 233-249 (2003) · Zbl 1030.45009
[31] Guo, D.: Multiple positive solutions of a boundary value problem for nth-order impulsive integro-differential equations in a Banach space. Nonlinear anal. 56, 985-1006 (2004) · Zbl 1054.45007
[32] Rachunkova, I.; Tomecek, J.: Impulsive BVPs with nonlinear boundary conditions for second order differential equations without growth conditions. J. math. Anal. appl. 292, 525-539 (2004)
[33] Samoilenko, A. M.; Perestyuk, N. A.: Impulsive differential equations. (1995) · Zbl 0837.34003
[34] Rogovchenko, Y. V.: Impulsive evolution systems: Main results and new trends. Dyn. contin. Discrete impuls. Syst. 3, 57-88 (1997) · Zbl 0879.34014
[35] Guo, D.: Multiple positive solutions of a boundary value problem for nth order impulsive integro-differential equations in Banach spaces. Nonlinear anal. 63, 618-641 (2005) · Zbl 1096.34042
[36] Zhang, W.; Fan, M.: Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays. Math. comput. Modelling 39, 479-493 (2004) · Zbl 1065.92066
[37] Yan, J.; Zhao, A.; Nieto, J. J.: Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka -- Volterra systems. Math. comput. Modelling 40, 509-518 (2004) · Zbl 1112.34052
[38] Li, W.; Huo, H.: Global attractivity of positive periodic solutions for an impulsive delay periodic model of respiratory dynamics. J. comput. Appl. math. 174, 227-238 (2005) · Zbl 1070.34089
[39] Tang, S.; Chen, L.: Density-dependent birth rate, birth pulses and their population dynamic consequences. J. math. Biol. 44, 185-199 (2002) · Zbl 0990.92033
[40] Zhang, X.; Shuai, Z.; Wang, K.: Optimal impulsive harvesting policy for single population. Nonlinear anal. Real world appl. 4, 639-651 (2003) · Zbl 1011.92052
[41] Liu, Y.; Xia, J.; Ge, W.: Positive periodic solutions of impulsive functional differential equations. J. appl. Math. comput. 19, 261-280 (2005) · Zbl 1092.34039
[42] Franco, D.; Liz, E.; Nieto, J. J.; Rogovchenko, Y. V.: A contribution to the study of functional differential equations with impulses. Math. nachr. 218, 49-60 (2000) · Zbl 0966.34073
[43] Wang, Q.; Liu, X.: Exponential stability for impulsive delay differential equations by razumikhin method. J. math. Anal. appl. 309, 462-473 (2005) · Zbl 1084.34066
[44] Luo, Z.; Shen, J.; Nieto, J. J.: Antiperiodic boundary value problem for first-order impulsive ordinary differential equations. Comput. math. Appl. 49, 253-261 (2005) · Zbl 1084.34018
[45] Chen, L.; Sun, J.: Nonlinear boundary value problem of first order impulsive functional differential equations. J. math. Anal. appl. 318, 726-741 (2006) · Zbl 1102.34052
[46] Qian, D.; Li, X.: Periodic solutions for ordinary differential equations with sublinear impulsive effects. J. math. Anal. appl. 303, 288-303 (2005) · Zbl 1071.34005