zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of unified chaotic system based on passive control. (English) Zbl 1119.34332
The paper studies the following control problem: Find a control function $u=u(x,y)$ such that two systems $x'=f(x)$ and $y'=f(y)+u$, where $x,y \in \bbfR^3$ are synchronized, i.e. $\Vert x(t,x_0)-y(t,y_0)\Vert \to 0$ for any initial conditions $x_0 = x(0,x_0)$ and $y_0=y(0,y_0)$. The function $f$ is chosen to correspond to the so called unified chaotic system, although chaos is not a matter of the paper.

MSC:
34H05ODE in connection with control problems
34D05Asymptotic stability of ODE
WorldCat.org
Full Text: DOI
References:
[1] Pecora, L. M.: Synchronization in chaotic systems. Phys. rev. Lett. 64, 821-824 (1990) · Zbl 0938.37019
[2] Colet, P.; Roy, R.: Digital communication with synchronized chaotic lasers. Opt. lett. 19, 2056 (1994)
[3] Sugawara, T.: Observation of synchronization in laser chaos. Phys. rev. Lett. 72, 3502-3505 (1994)
[4] Chen, H. -K.: Global chaos synchronization of a new chaotic system via nonlinear control. Chaos solitons fractals 23, 1245-1251 (2005) · Zbl 1102.37302
[5] Hong, Y.; Qin, H.; Chen, G. R.: Adaptive synchronization of chaotic systems via state or output feedback control. Internat. J. Bifur. chaos 11, 1149-1158 (2001) · Zbl 1090.93535
[6] Park, J. H.: Synchronization of Genesio chaotic system via backstepping approach. Chaos solitons fractals 27, 1369-1375 (2006) · Zbl 1091.93028
[7] Li, C. D.; Xiao, X. F.: Impulsive synchronization of chaotic systems. Chaos (2005) · Zbl 1080.37034
[8] Agiza, H. N.; Yassen, M. T.: Synchronization of Rössler and Chen chaotic dynamical systems using active control. Phys. lett. A 278, 191-197 (2000) · Zbl 0972.37019
[9] Wen, Y.: Passive equivalence of chaos in Lorenz system. IEEE trans. Circuits syst. I 46, 876-878 (1999)
[10] Qi, D. L.; Li, X. R.; Zhao, G. Z.: Passive control of hybrid chaotic dynamical systems. J. zhejiang university (Engineering science) 38, 86-89 (2004)
[11] Lu, J. H.; Chen, G. R.; Cheng, D.; Celikovsky, S.: Bridge the gap between the Lorenz system and the Chen system. Internat. J. Bifur. chaos 12, 2917-2926 (2002) · Zbl 1043.37026
[12] Lorenz, E. N.: Deterministic nonperiodic flow. J. atmos. Sci. 20, 130-141 (1963)
[13] Chen, G. R.; Ueta, T.: Yet another chaotic attractor. Internat. J. Bifur. chaos 9, 1465-1466 (1999) · Zbl 0962.37013
[14] Lu, J. H.; Chen, G. R.: A new chaotic attractor coined. Internat. J. Bifur. chaos 12, 659-661 (2002) · Zbl 1063.34510