zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Second order $q$-difference equations solvable by factorization method. (English) Zbl 1119.39017
The factorization method to solve ordinary differential equations due to Darboux has many applications to orthogonal polynomials and quantum mechanics. The authors propose an extension to $q$-difference equations. It is a $q$-analogue, since, in the continuous limit $q \to 1$, it boils down to the classical factorization method (at least in the usual intuitive description of “continuous limit”). The paper contains the proof in a particular important case (indeed, a generalisation of a famous study by {\it L. Infeld} and {\it T. E. Hull}, Rev. Mod. Phys. 23, 21--68 (1951; Zbl 0043.38602) that the $q$-Hahn orthogonal polynomials are among the solutions. They also consider other interesting examples.

39A13Difference equations, scaling ($q$-differences)
33D45Basic orthogonal polynomials and functions (Askey-Wilson polynomials, etc.)
39A12Discrete version of topics in analysis
Full Text: DOI arXiv
[1] Álvarez-Nodarse, R.; Atakishiyev, N. M.; Costas-Santos, R. S.: Factorization of the hypergeometric-type difference equation on non-uniform lattices: dynamical algebra. J. phys. A: math. Gen. 38, 153-174 (2005) · Zbl 1079.33017
[2] Álvarez-Nodarse, R.; Costas-Santos, R. S.: Factorization method for difference equations of hypergeometric type on nonuniform lattices. J. phys. A: math. Gen. 34, 5551-5569 (2001) · Zbl 0994.39001
[3] Álvarez-Nodarse, R.; Smirnov, Y. F.: The dual Hahn q-polynomials in the lattice $x(s)$=[s]q[s+1]q and the q-algebras $SUq(2)$ and $SUq(1,1)$. J. phys. A: math. Gen. 29, 1435-1451 (1996) · Zbl 0912.33011
[4] Atakishiyev, N. M.; Frank, A.; Wolf, K. B.: A simple difference realization of the Heisenberg q-algebra. J. math. Phys. 35, 3253-3260 (1994) · Zbl 0809.17014
[5] Atakishiyev, N. M.; Suslov, S. K.: Difference analogs of the harmonic oscillator. Theoret. and math. Phys. 85, 64-73 (1990)
[6] Atakishiyev, N. M.; Suslov, S. K.: Explicit realization of the q-harmonic oscillator. Theoret. and math. Phys. 87, 154-156 (1991)
[7] Bangerezako, G.: The factorization method for the Askey -- Wilson polynomials. J. comput. Appl. math. 107, 219-232 (1999) · Zbl 0933.39042
[8] Bangerezako, G.; Hounkonnou, M. N.: The factorization method for the general second order q-difference equation and the Laguerre -- Hahn polynomials on the general q-lattice. J. phys. A: math. Gen. 36, 765-773 (2003) · Zbl 1051.39018
[9] Chihara, T. S.: An introduction to orthogonal polynomials. (1978) · Zbl 0389.33008
[10] Darboux, G.: Sur une proposition relative aux equations lineaires. CR acad. Sci. Paris 94, 1456 (1882) · Zbl 14.0264.01
[11] Dirac, P. A. M.: Principles of quantum mechanics. (1947) · Zbl 0030.04801
[12] Gasper, G.; Rahman, M.: Basic hypergeometric series. (1990) · Zbl 0695.33001
[13] Goliński, T.; Odzijewicz, A.: General difference calculus and its application to functional equations of the second order. Czechoslovak J. Phys. 52, 1219-1224 (2002) · Zbl 1051.39023
[14] Goliński, T.; Odzijewicz, A.: Factorization method for second order functional equations. J. comput. Appl. math. 176, 331-355 (2005) · Zbl 1067.39034
[15] Hahn, W.: Uber orthogonalpolynome die q-differenzengleichungeg genüngen¨. Math. nachr. 2, 4-34 (1949) · Zbl 0031.39001
[16] Infeld, L.; Hull, T. E.: The factorization method. Rev. mod. Phys. 23, 21-68 (1951) · Zbl 0043.38602
[17] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Report no. 98-17, TUDelft, webpage http://aw.twi.tudelft.nl/koekoek/askey.html, 1998.
[18] De Lange, O. L.; Raab, R. E.: Operator methods in quantum mechanics. (1991)
[19] Mielnik, B.; Nieto, L. M.; Rosas-Ortiz, O.: The finite difference algorithm for higher order supersymmetry. Phys. lett. A 269, 70-78 (2000) · Zbl 1115.81350
[20] Jr., W. Miller: Lie theory and special functions. (1968)
[21] Jr., W. Miller: Lie theory and q-difference equations. SIAM J. Math. anal. 1, No. 2, 171-188 (1970)
[22] Odzijewicz, A.; Horowski, H.; Tereszkiewicz, A.: Integrable multi-boson systems and orthogonal polynomials. J. phys. A: math. Gen. 34, 4353-4376 (2001) · Zbl 0978.81084
[23] Schrödinger, E.: Proc. roy. Irish acad. A. 46 (1940) · Zbl 66.1152.08
[24] Spiridonov, V.: Universal superpositions of coherent states and self-similar potentials. Phys. rev. A 52, 1909-1935 (1995)
[25] Veselov, A. P.; Shabat, A. B.: Funct. anal. Appl.. 27, 1-21 (1993)