×

Riesz transforms for symmetric diffusion operators on complete Riemannian manifolds. (English) Zbl 1119.53022

Summary: Let \((M, g)\) be a complete Riemannian manifold, \(L=\Delta -\nabla \phi \cdot \nabla\) be a Markovian symmetric diffusion operator with an invariant measure \(d\mu(x)=e^{-\phi(x)}d\nu(x)\), where \(\phi\in C^2(M)\), \(\nu\) is the Riemannian volume measure on \((M, g)\). A fundamental question in harmonic analysis and potential theory asks whether or not the Riesz transform \(R_a(L)=\nabla(a-L)^{-1/2}\) is bounded in \(L^p(\mu)\) for all \(1<p<\infty\) and for certain \(a\geq 0\). An affirmative answer to this problem has many important applications in elliptic or parabolic PDEs, potential theory, probability theory, the \(L^p\)-Hodge decomposition theory and in the study of Navier-Stokes equations and boundary value problems. Using some new interplays between harmonic analysis, differential geometry and probability theory, we prove that the Riesz transform \(R_a(L)=\nabla(a-L)^{-1/2}\) is bounded in \(L^p(\mu)\) for all \(a>0\) and \(p\geq 2\) provided that \(L\) generates a ultracontractive Markovian semigroup \(P_t=e^{tL}\) in the sense that \(P_t 1=1\) for all \(t\geq 0\), \(\| P_t\| _{1, \infty} < Ct^{-n/2}\) for all \(t\in (0, 1]\) for some constants \(C>0\) and \(n > 1\), and satisfies \[ (K+c)^{-}\in L^{{n\over 2}+\varepsilon}(M, \mu) \] for some constants \(c\geq 0\) and \(\varepsilon>0\), where \(K(x)\) denotes the lowest eigenvalue of the Bakry-Emery Ricci curvature \(Ric(L)=Ric+\nabla^2\phi\) on \(T_x M\), i.e., \[ K(x)=\inf\limits\{Ric(L)(v, v): v\in T_x M, \| v\| =1\}, \quad\forall\;x\in M. \] Examples of diffusion operators on complete non-compact Riemannian manifolds with unbounded negative Ricci curvature or Bakry-Emery Ricci curvature are given for which the Riesz transform \(R_a(L)\) is bounded in \(L^p(\mu)\) for all \(p\geq 2\) and for all \(a>0\) (or even for all \(a\geq 0\)).

MSC:

53C20 Global Riemannian geometry, including pinching
31C12 Potential theory on Riemannian manifolds and other spaces
58J65 Diffusion processes and stochastic analysis on manifolds
60H30 Applications of stochastic analysis (to PDEs, etc.)
PDF BibTeX XML Cite
Full Text: DOI Euclid EuDML

References:

[1] Auscher, P., Coulhon, T., Duong, X.T. and Hofmann, S.: Riesz transform on manifolds and heat kernel regularity. Ann. Sci. École Norm. Sup. (4) 37 (2004), 911-957. · Zbl 1086.58013
[2] Bakry, D., Émery, M.: Diffusions hypercontractives. In Séminarie de probabilités, XIX, 1983/84 , 177-206. Lecture Notes in Mathematics 1123 . Springer, Berlin, 1985. · Zbl 0561.60080
[3] Bakry, D.: Transformations de Riesz pour les semi-groupes symmétriques. I, II. In Séminarie de probabilités, XIX, 1983/84 , 130-144, 145-175. Lecture Notes in Mathematics 1123 . Springer, Berlin, 1985.
[4] Bakry, D.: Un critére de non-explosion pour certaines diffusions sur une variété riemannienne compléte. C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), 23-26. · Zbl 0589.60069
[5] Bakry, D.: Étude des transformations de Riesz dans les variétés riemanniennes à courbure de Ricci minorée. In Séminaire de Probabilités, XXI , 137-172. Lecture Notes in Mathematics 1247 . Springer, Berlin, 1987. · Zbl 0629.58018
[6] Bakry, D.: The Riesz transforms associated with second order differential operators. In Seminar on Stochastic Processes (Gainesville, FL, 1988) , 1-43. Progr. Probab. 17 . Birkhäuser Boston, Boston, 1989. · Zbl 0689.58032
[7] Bakry, D.: L’hypercontractivité et son utilisation en théorie des semigroupes. In Lectures on probability theory (Saint-Flour, 1992) , 1-114. Lecture Notes in Mathematics 1581 . Springer, Berlin, 1994. · Zbl 0856.47026
[8] Bakry, D. and Qian, Z.-M.: Volume comparison theorems without Jacobi fields. Preprint, 2003.
[9] Berthier, A.-M. and Gaveau, B.: Critère de convergence des fonctionnelles de Kac et application en mécanique quantique et en géométrie. J. Funct. Anal. 29 (1978), no. 3, 416-424. · Zbl 0398.60076
[10] Chavel, I.: Isoperimetric inequalities. Differential geometric and analytic perspectives . Cambridge Tracts in Mathematics 145 . Cambridge University Press, Cambridge, 2001. · Zbl 0988.51019
[11] Chen, J.-C.: Heat kernels on positively curved manifolds and their applications . Ph.D. Thesis, Hangzhou University, 1987.
[12] Chung, K.L. and Zhao, Z.: From Brownian motion to Schrödinger’s equation . Fundamental Principles of Mathematical Sciences 312 . Springer-Verlag, Berlin, 1995. · Zbl 0819.60068
[13] Coulhon, T. and Duong, X.T.: Riesz transforms for \(1\leq p\leq 2\). Trans. Amer. Math. Soc. 351 (1999), 1151-1169. JSTOR: · Zbl 0973.58018
[14] Coulhon, T. and Duong, X.T.: Riesz transforms for \(p&gt;2\). C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 975-980. · Zbl 0987.43001
[15] Coulhon, T. and Duong, X.T.: Riesz transform and related inequalities on non-compact Riemannian manifolds. Comm. Pure Appl. Math. 56 (2003), no. 12, 1728-1751. · Zbl 1037.58017
[16] Coulhon, T., Duong, X.T. and Li, X.D.: Littlewood-Paley-Stein functions on complete Riemannian manifolds for \(1\leq p\leq 2\). Studia Math. 154 (2003), no. 1, 37-57. · Zbl 1035.42014
[17] Coulhon, T. and Ledoux, M.: Isopérimétrie, décroissance du noyau de la chaleur et transformations de Riesz: un contre-exemple. Ark. Mat. 32 (1994), 63-77. · Zbl 0826.53035
[18] Cruzeiro, A.-B. and Malliavin, P.: Renormalized differential geometry on path space: structural equation, curvature. J. Funct. Anal. 139 (1996), 119-181. · Zbl 0869.60060
[19] Davies, E.B.: Heat kernels and spectral theory . Cambridge Tracts in Mathematics 92 . Cambridge University Press, Cambridge, 1989. · Zbl 0699.35006
[20] Davies, E.B. and Simon, B.: \(L^p\)-norms of noncritical Schrödinger semigroups. J. Funct. Anal. 102 (1991), 95-115. · Zbl 0743.47047
[21] De Rham, G.: Variétés Differentiables. Formes, courants, formes harmoniques . Actualités Sci. Ind. 1222 . Hermann, Paris, 1955. · Zbl 0065.32401
[22] Elworthy, K.D.: Stochastic differential equations on manifolds . London Mathematical Society Lecture Note Series 70 . Cambridge University Press, Cambridge-New York, 1982. · Zbl 0514.58001
[23] Elworthy, K.D. and Li, X.-M.: Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125 (1994), 252-286. · Zbl 0813.60049
[24] Elworthy, D., LeJan, Y. and Li, X.-M.: On the geometry of diffusion operators and stochastic flows . Lecture Notes in Mathematics 1720 . Springer-Verlag, Berlin, 1999.
[25] Elworthy, D. and Rosenberg, S.: The Witten Laplacian on negatively curved simply connected manifolds. Tokyo J. Math. 16 (1993), 513-524. · Zbl 0799.53046
[26] Fukushima, M.: \((r, p)\)-capacities and Hunt processes in infinite dimensions. In Probability Theory and Mathematical Statistics (Kiev, 1991) , 96-103. World Sci. Publishing, River Edge, NJ, 1992. · Zbl 0817.60082
[27] Getzler, E.: Dirichlet forms on loop space. Bull. Sci. Math. (2) 113 (1989), no. 2, 151-174. · Zbl 0683.31002
[28] Gilbarg, D. and Trudinger, N.S.: Elliptic partial differential equations of second order . Springer-Verlag, 1977 (first edition), 1988 (second edition) and 2001 (third edition). · Zbl 0361.35003
[29] Gong, F.-Z. and Wang, F.-Y.: Heat kernel estimates with application to compacteness of manifolds. Q. J. Math. , 52 (2001), 171-180. · Zbl 1132.58302
[30] Grigor’yan, A.A.: Stochastically complete manifolds. (Russian) Dokl. Akad. Nauk SSSR 290 (1986), no. 3, 534-537. English translation in Soviet Math. Dokl. 34 (1987), no. 2, 310-313.
[31] Gundy, R.: Some Topics in Probability and Analysis . CBMS Regional Conference Series in Math. 70 . Amer. Math. Soc., Providence, RI, 1989. · Zbl 0673.60050
[32] Hebey, E.: Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities . Courant Lecture Notes in Mathematics 5 . American Mathematical Society, Providence, RI, 1999. · Zbl 0981.58006
[33] Hoffman, D. and Spruck, J.: Sobolev and isoperimetric inequalities for Riemannian submanifolds. Comm. Pure Appl. Math. 27 (1974), 715-727. · Zbl 0295.53025
[34] Iwaniec, T. and Martin, G.: Quasiregular mappings in even dimensions. Acta Math. 170 (1993), 29-81. · Zbl 0785.30008
[35] Karp, L. and Li, P.: The heat equation on complete Riemannian manifolds. Unpublished manuscript.
[36] Kavian, O., Kerkyacharian, G. and Roynette, B.: Quelques remarques sur l’ultracontractivité. J. Funct. Anal. 111 (1993), 155-196. · Zbl 0807.47027
[37] Kazumi, T. and Shigekawa, I.: Measures of finite \((r, p)\)-energy and potentials on a separable metric space. In Séminaire de Probabilités, XXVI , 415-444. Lecture Notes in Mathematics 1526 . Springer, Berlin, 1992. · Zbl 0769.60069
[38] Lenglart, E., Lépingle, D. and Pratelli, M.: Présentation unifiée de certaines inégalités de la théorie des martingales. In Séminaire de Probabilités XIV , 26-52. Lecture Notes in Mathematics 784 . Springer, Berlin, 1980. · Zbl 0427.60042
[39] Li, H.-Q.: La transformation de Riesz sur les variétés coniques. J. Funct. Anal. 168 (1999), 145-238. · Zbl 0937.43004
[40] Li, J.: Boundedness of the Riesz potential on a complete manifold with nonnegative Ricci curvature. Proc. Amer. Math. Soc. 118 (1993), no. 4, 1075-1077. · Zbl 0791.58106
[41] Li, J.: Gradient estimate for the heat kernel of a complete Riemannian manifold and its applications. J. Funct. Anal. 97 (1991), no. 2, 293-310. · Zbl 0724.58064
[42] Li, P.: Uniqueness of \(L^ 1\) solutions for the Laplace equation and the heat equation on Riemannian manifolds. J. Differential Geom. 20 (1984), no. 2, 447-457. · Zbl 0561.53045
[43] Li, X. D.: Sobolev spaces and capacities theory on path spaces over a compact Riemannian manifold. Probab. Theory Related Fields 125 (2003), 96-134. · Zbl 1018.58026
[44] Li, X.D.: Riesz transform and Schrödinger operator on complete Riemannian manifolds with negative Ricci curvature. Preprint (will not be submitted), 2002.
[45] Li, X.D.: Littlewood-Paley-Stein inequalities and Riesz transforms on manifolds. In Recent developments in stochastic analysis and related topics , 289-308. World Sci. Publ., Hackensack, NJ, 2004. · Zbl 1079.58027
[46] Li, X.-M.: On extension of Myers’ theorem. Bull. London. Math. Soc. 27 (1995), no. 4, 392-396. · Zbl 0835.60056
[47] Lions, P.L. and Masmoudi, N.: Uniqueness of mild solutions of the Navier-Stokes system in \(L^ N\). Comm. Partial Differential Equations 26 (2001), 2211-2226. · Zbl 1086.35077
[48] Lohoué, N.: Comparaison des champs de vecteurs et des puissances du laplacien sur une variété riemannienne à courbure non positive. J. Funct. Anal. 61 (1985), no. 2, 164-201. · Zbl 0605.58051
[49] Lohoué, N.: Transformées de Riesz et fonctions de Littlewood-Paley sur les groupes non moyennables. C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), 327-330. · Zbl 0661.43002
[50] Lott, J.: Some geometric properties of the Bakry-Émery-Ricci tensor. Comment. Math. Helv. 78 (2003), no. 4, 865-883. · Zbl 1038.53041
[51] Lyons, T.: Instability of the conservative property under quasi-isometries. J. Differential Geom. 34 (1991), no. 2, 483-489. · Zbl 0747.53034
[52] McKean, H.P.: An upper bound on the spectrum of \(\Delta\) on a manifold of negative curvature. J. Differential Geom. 4 (1970), 359-366. · Zbl 0197.18003
[53] Malliavin, P.: Formules de la moyenne, calcul des perturbations et théorèmes d’annulation pour les formes harmoniques. J. Funct. Anal. 17 (1974), 274-291. · Zbl 0425.58022
[54] Malliavin, P.: Stochastic Analysis . Fundamental Principles of Mathematical Sciences 313 . Springer-Verlag, Berlin, 1997. · Zbl 0878.60001
[55] Meyer, P.-A.: Démonstration probabiliste de certaines inégalités de Littlewood-Paley. I-IV. In Séminaire de Probabilités, X , 125-141, 142-161, 164-174, 175-183. Lecture Notes in Mathematics 511 . Springer, Berlin, 1976. · Zbl 0332.60032
[56] Meyer, P.-A.: Note sur les processus d’Ornstein-Uhlenbeck. In Seminar on Probability, XVI , 95-133. Lecture Notes in Mathematics 920 . Springer, Berlin-New York, 1982. · Zbl 0481.60041
[57] Pisier, G.: Riesz transforms: a simpler analytic proof of P.-A. Meyer’s inequality. In Séminaire de Probabilités, XXII , 485-501. Lecture Notes in Mathematics 1321 . Springer, Berlin, 1988. · Zbl 0645.60061
[58] Röckner, M. and Schmuland, S.: Tightness of general \(C_1, p\) capacities on Banach space. J. Funct. Anal. 108 (1992), no. 1, 1-12. · Zbl 0757.60058
[59] Rosenberg, S. and Yang, D.: Bounds on the fundamental group of a manifold with almost nonnegative Ricci curvature. J. Math. Soc. Japan. 46 (1994), no. 2, 267-287. · Zbl 0818.53058
[60] Schoen, R. and Yau, S.-T.: Lectures on differential geometry . Conference Proceedings and Lecture Notes in Geometry and Topology, I . International Press, Cambridge, MA, 1994. · Zbl 0830.53001
[61] Schwarz, G.: Hodge decomposition -a method for solving boundary value problems . Lecture Notes in Mathematics 1607 . Springer-Verlag, Berlin, 1995. · Zbl 0828.58002
[62] Shigekawa, I. and Yoshida, N.: Littlewood-Paley-Stein inequality for a symmetric diffusion. J. Math. Soc. Japan. 44 (1992), 251-280. · Zbl 0764.60060
[63] Stein, E.M.: Singular integrals and differentiability properties of functions . Princeton Mathematical Series 30 . Princeton University Press, Princeton, N.J. 1970. · Zbl 0207.13501
[64] Stein, E.M.: Topics in harmonic analysis related to Littlewood-Paley Theory . Annals of Math. Studies. 63 . Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo 1970. · Zbl 0193.10502
[65] Strichartz, R.: Analysis of the Laplacian on the complete Riemannian manifold. J. Funct. Anal. 52 (1983), 48-79. · Zbl 0515.58037
[66] Strichartz, R.: \(L^p\) contractive projections and the heat semigroup for differential forms. J. Funct. Anal. 65 (1986), 348-357. · Zbl 0587.58044
[67] Sturm, K.-T.: Schrödinger semigroups on manifolds. J. Funct. Anal. 118 (1993), 309-350. · Zbl 0804.58053
[68] Sturm, K.-T.: Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and \(L^p\)-Liouville properties. J. Reine Angew. Math. 456 (1994), 173-196. · Zbl 0806.53041
[69] Sugita, H.: Positive generalized Wiener functions and potential theory over abstract Wiener spaces. Osaka J. Math. 25 (1988), 665-696. · Zbl 0737.46038
[70] Varopoulos, N.-Th.: Hardy-Littlewood theory for semigroups. J. Funct. Anal. 63 (1985), 240-260. · Zbl 0608.47047
[71] Varopoulos, N.-Th., Saloff-Coste, L. and Coulhon, T.: Analysis and Geometry on Groups . Cambridge Tracts in Mathematics 100 . Cambridge University Press, Cambridge, 1992. · Zbl 0813.22003
[72] Wu, L.: \(L^p\)-uniqueness of Schrödinger operators and the capacitary positive improving property. J. Funct. Anal. 182 (2001), 51-80. · Zbl 0992.35028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.